Abstract 2117

Regulation of the bond between platelet glycoprotein (GP) Ibα of the GPIb-IX-V complex, and the von Willebrand Factor (VWF) A1 domain is critical to the balance between hemostasis and thrombosis, particularly in high shear conditions. The GPIbα-A1 interaction is known to be activated by shear stress and inhibited by neighboring domains in VWF, but the role of neighboring domains in the shear-dependence remained unknown. Here it is shown that platelet aggregation required shear stress in the presence of VWF proteins that contain the neighboring D′D3 domain (Plus D′D3 or plasma VWF) but that platelets aggregate spontaneously with a protein that lacks this region (Delta D′D3). Moreover, platelets and microspheres coated with the N-terminal 300 amino acids of GPIbα (GC300) bind to immobilized VWF in a shear-enhanced manner for Plus D′D3 but not for Delta D′D3. In single-molecule force spectroscopy experiments, the D′D3 domain decreased the number of GPIbα-A1 bonds that formed, but did not alter bond rupture force, consistent with the hypothesis that D′D3 shields the A1 domain. By expressing recombinant VWF fragments that contain the A1 domain and various lengths of the N-terminal region, we determined that most of the inhibition by the D′D3 domain was conferred by 23 amino acids in the linker between the A1 domain and the D′D3 domain. By anchoring the fragments to the surface in an oriented manner, we demonstrated that binding was much stronger when force was applied between GPIbα and the A1 C-terminus, than when force was applied between GPIbα and the A1 N-terminus, similar to what has been observed for integrins. Based on these results, we propose the following model for regulation of VWF by mechanical force. When multimeric VWF is stretched in flow, the D′D3 domains are pulled away from the A1 domains, exposing the latter to bind platelets. When force is applied between GPIbα and the C-terminus of A1, it induces an activating conformational change that could be analogous to that seen in integrins.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution