• β2GPI-deficient mice are relatively protected from arterial, venous, and microvascular thrombosis.

  • β2GPI-deficient mice display prolonged tail bleeding and reduced PAR3-dependent platelet activation by thrombin, both corrected by β2GPI.

Abstract

Antibodies to β2-glycoprotein I (β2GPI) cause thrombosis in antiphospholipid syndrome; however, the role of β2GPI in coagulation in vivo is not understood. To address this issue, we developed β2GPI-deficient mice (Apoh–/–) by deleting exons 2 and 3 of Apoh using CRISPR/Cas9 and compared the development of thrombosis in wild-type (WT) and Apoh–/– mice using rose bengal– and FeCl3-induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and activation of platelets from WT and Apoh–/– mice in the absence and presence of β2GPI. Apoh–/– mice demonstrated prolonged time to occlusion of the carotid after exposure to rose bengal or FeCl3 and reduced platelet and fibrin accumulation in cremasteric arterioles after laser injury. Significantly smaller thrombi formed in the IVC of Apoh–/– mice 48 hours after IVC occlusion. The activated partial thromboplastin time and prothrombin time, as well as activated partial thromboplastin time reagent and tissue factor–induced thrombin generation times, of Apoh–/– and WT plasma revealed no differences. However, we observed significant prolongation of tail bleeding in Apoh–/– mice and reduced P-selectin expression and fibrinogen binding to activated α2bβ3 on platelets from these mice after stimulation with thrombin; these changes were reversed by β2GPI. A protease activated receptor 3 (PAR3) antibody blocked thrombin-induced activation of WT platelets and the ability of β2GPI to restore thrombin-induced activation of Apoh–/– platelets. These studies demonstrate that β2GPI may promote platelet activation by enhancing the ability of PAR3 to present thrombin to PAR4.

1.
Garcia
D
,
Erkan
D
.
Diagnosis and management of the antiphospholipid syndrome
.
N Engl J Med
.
2018
;
378
(
21
):
2010
-
2021
.
2.
Chaturvedi
S
,
McCrae
KR
.
Diagnosis and management of the antiphospholipid syndrome
.
Blood Rev
.
2017
;
31
(
6
):
406
-
417
.
3.
Chaturvedi
S
,
Braunstein
EM
,
Brodsky
RA
.
Antiphospholipid syndrome: complement activation, complement gene mutations, and therapeutic implications
.
J Thromb Haemost
.
2021
;
19
(
3
):
607
-
616
.
4.
de Laat
B
,
Derksen
RH
,
Reber
G
, et al
.
An international multicentre-laboratory evaluation of a new assay to detect specifically lupus anticoagulants dependent on the presence of anti-beta2-glycoprotein autoantibodies
.
J Thromb Haemost
.
2011
;
9
(
1
):
149
-
153
.
5.
de Laat
B
,
Derksen
RH
,
Urbanus
RT
,
Roest
M
,
De Groot
PG
.
Beta2-glycoprotein I-dependent lupus anticoagulant highly correlates with thrombosis in the antiphospholipid syndrome
.
Blood
.
2004
;
104
(
12
):
3598
-
3602
.
6.
de Laat
B
,
Mertens
K
,
De Groot
PG
.
Mechanisms of disease: antiphospholipid antibodies-from clinical association to pathologic mechanism
.
Nat Clin Pract Rheumatol
.
2008
;
4
(
4
):
192
-
199
.
7.
Manukyan
D
,
Müller-Calleja
N
,
Jäckel
S
, et al
.
Cofactor-independent human antiphospholipid antibodies induce venous thrombosis in mice
.
J Thromb Haemost
.
2016
;
14
(
5
):
1011
-
1020
.
8.
Müller-Calleja
N
,
Hollerbach
A
,
Royce
J
, et al
.
Lipid presentation by the protein C receptor links coagulation with autoimmunity
.
Science
.
2021
;
371
(
6534
):
eabc0956
.
9.
Lozier
J
,
Takahashi
N
,
Putnam
FW
.
Complete amino acid sequence of human plasma beta 2-glycoprotein I
.
Proc Natl Acad Sci U S A
.
1984
;
81
(
12
):
3640
-
3644
.
10.
McDonnell
T
,
Wincup
C
,
Buchholz
I
, et al
.
The role of beta-2-glycoprotein I in health and disease associating structure with function: more than just APS
.
Blood Rev
.
2020
;
39
:
100610
.
11.
de Laat
B
,
Pengo
V
,
Pabinger
I
, et al
.
The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study
.
J Thromb Haemost
.
2009
;
7
(
11
):
1767
-
1773
.
12.
de Laat
B
,
De Groot
PG
.
Autoantibodies directed against domain I of beta2-glycoprotein I
.
Curr Rheumatol Rep
.
2011
;
13
(
1
):
70
-
76
.
13.
de Laat
B
,
Derksen
RH
,
van Lummel
M
,
Pennings
MT
,
De Groot
PG
.
Pathogenic anti-beta2-glycoprotein I antibodies recognize domain I of beta2-glycoprotein I only after a conformational change
.
Blood
.
2006
;
107
(
5
):
1916
-
1924
.
14.
Pelkmans
L
,
Kelchtermans
H
,
De Groot
PG
, et al
.
Variability in exposure of epitope G40-R43 of domain i in commercial anti-beta2-glycoprotein I IgG ELISAs
.
PLoS One
.
2013
;
8
(
8
):
e71402
.
15.
Iverson
GM
,
Reddel
S
,
Victoria
EJ
, et al
.
Use of single point mutations in domain I of beta 2-glycoprotein I to determine fine antigenic specificity of antiphospholipid autoantibodies
.
J Immunol
.
2002
;
169
(
12
):
7097
-
7103
.
16.
Reddel
SW
,
Wang
YX
,
Sheng
YH
,
Krilis
SA
.
Epitope studies with anti-beta 2-glycoprotein I antibodies from autoantibody and immunized sources
.
J Autoimmun
.
2000
;
15
(
2
):
91
-
96
.
17.
Ioannou
Y
,
Pericleous
C
,
Giles
I
,
Latchman
DS
,
Isenberg
DA
,
Rahman
A
.
Binding of antiphospholipid antibodies to discontinuous epitopes on domain I of human beta(2)-glycoprotein I: mutation studies including residues R39 to R43
.
Arthritis Rheum
.
2007
;
56
(
1
):
280
-
290
.
18.
Brighton
TA
,
Hogg
PJ
,
Dai
YP
,
Murray
BH
,
Chong
BH
,
Chesterman
CN
.
Beta2-glycoprotein I in thrombosis: evidence for a role as a natural anticoagulant
.
Br J Haematol
.
1996
;
93
(
1
):
185
-
194
.
19.
Pozzi
N
,
Acquasaliente
L
,
Frasson
R
, et al
.
β2-Glycoprotein I binds to thrombin and selectively inhibits the enzyme procoagulant functions
.
J Thromb Haemost
.
2013
;
11
(
6
):
1093
-
1102
.
20.
Sheng
Y
,
Reddel
SW
,
Herzog
H
, et al
.
Impaired thrombin generation in beta 2 glycoprotein I null mice
.
J Biol Chem
.
2001
;
276
(
17
):
13817
-
13821
.
21.
Ninivaggi
M
,
Kelchtermans
H
,
Lindhout
T
,
de Laat
BJTr
.
Conformation of beta2glycoprotein I and its effect on coagulation
.
Thromb Res
.
2012
;
130
(
suppl 1
):
S33
-
S36
.
22.
Shi
T
,
Iverson
GM
,
Qi
JC
, et al
.
Beta 2- glycoprotein I binds factor XI and inhibits its activation by thrombin and factor XIIa: loss of inhibition by clipped beta 2 glycoprotein I
.
Proc Natl Acad Sci U S A
.
2004
;
101
(
11
):
3939
-
3944
.
23.
Keeling
DM
,
Wilson
AJ
,
Mackie
IJ
,
Isenberg
DA
,
Machin
SJ
.
Role of beta 2-glycoprotein I and anti-phospholipid antibodies in activation of protein C in vitro
.
J Clin Pathol
.
1993
;
46
(
10
):
908
-
911
.
24.
Ieko
M
,
Ichikawa
K
,
Triplett
DA
, et al
.
Beta 2 glycoprotein I is necessary to inhibit protein C activity by monoclonal anticardiolipin antibodies
.
Arthritis Rheum
.
1999
;
42
(
1
):
167
-
174
.
25.
Nimpf
J
,
Wurm
H
,
Kostner
GM
.
Interaction of beta 2-glycoprotein-I with human blood platelets: influence upon the ADP-induced aggregation
.
Thromb Haemost
.
1985
;
54
(
2
):
397
-
401
.
26.
Schousboe
I
.
Binding of β2-glycoprotein I to platelets: effect of adenylate cyclase activity
.
Thromb Res
.
1980
;
19
(
1-2
):
225
-
237
.
27.
Nimpf
J
,
Wurm
H
,
Kostner
GM
.
β2-glycoprotein-I (apo-H) inhibits the release reaction of human platelets during ADP-induced aggregation
.
Atherosclerosis
.
1987
;
63
(
2-3
):
109
-
114
.
28.
Nimpf
J
,
Bevers
EM
,
Bomans
PHH
, et al
.
Prothrombinase activity of human platelets is inhibited by β2-glycoprotein I
.
Biochim Biophys Acta
.
1986
;
884
(
1
):
142
-
149
.
29.
Robertson
JO
,
Li
W
,
Silverstein
RL
,
Topol
EJ
,
Smith
JD
.
Deficiency of LRP8 in mice is associated with altered platelet function and prolonged time for in vivo thrombosis
.
Thromb Res
.
2009
;
123
(
4
):
644
-
652
.
30.
Lutters
BC
,
De Groot
PG
,
Derksen
RH
.
beta 2 glycoprotein I -- a key player in the antiphospholipid syndrome
.
Isr Med Assoc J
.
2002
;
4
(
suppl 11
):
958
-
962
.
31.
Passam
FH
,
Chen
G
,
Chen
VM
,
Qi
M
,
Krilis
SA
,
Giannakopoulos
B
.
Βeta-2-glycoprotein I exerts antithrombotic function through its domain V in mice
.
J Autoimmun
.
2022
;
126
:
102747
.
32.
Nieman
MT
,
Warnock
M
,
Hasan
AA
, et al
.
The preparation and characterization of novel peptide antagonists to thrombin and factor VIIa and activation of protease-activated receptor 1
.
J Pharmacol Exp Ther
.
2004
;
311
(
2
):
492
-
501
.
33.
Eitzman
DT
,
Westrick
RJ
,
Nabel
EG
,
Ginsburg
D
.
Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice
.
Blood
.
2000
;
95
(
2
):
577
-
580
.
34.
Tourdot
BE
,
Adili
R
,
Isingizwe
ZR
, et al
.
12-HETrE inhibits platelet reactivity and thrombosis in part through the prostacyclin receptor
.
Blood Adv
.
2017
;
1
(
15
):
1124
-
1131
.
35.
Wrobleski
SK
,
Farris
DM
,
Diaz
JA
,
Myers
DD
,
Wakefield
TW
.
Mouse complete stasis model of inferior vena cava thrombosis
.
J Vis Exp
.
2011
(
52
):
2738
.
36.
Shukla
M
,
Sekhon
UD
,
Betapudi
V
, et al
.
In vitro characterization of SynthoPlate™ (synthetic platelet) technology and its in vivo evaluation in severely thrombocytopenic mice
.
J Thromb Haemost
.
2017
;
15
(
2
):
375
-
387
.
37.
Schmittgen
TD
,
Livak
KJ
.
Analyzing real-time PCR data by the comparative CT method
.
Nat Protoc
.
2008
;
3
(
6
):
1101
-
1108
.
38.
Schmittgen
TD
,
Zakrajsek
BA
,
Mills
AG
,
Gorn
V
,
Singer
MJ
,
Reed
MW
.
Quantitative reverse transcription-polymerase chain reaction to study mRNA decay; comparison of endpoint and real-time methods
.
Anal Biochem
.
2000
;
285
(
2
):
194
-
204
.
39.
Bennett
JA
,
Ture
SK
,
Schmidt
RA
, et al
.
Acetylcholine inhibits platelet activation
.
J Pharmacol Exp Ther
.
2019
;
369
(
2
):
182
-
187
.
40.
Cameron
SJ
,
Mix
DS
,
Ture
SK
, et al
.
Hypoxia and ischemia promote a maladaptive platelet phenotype
.
Arterioscler Thromb Vasc Biol
.
2018
;
38
(
7
):
1594
-
1606
.
41.
Soo Kim
B
,
Auerbach
DS
,
Sadhra
H
, et al
.
Sex-specific platelet activation through protease-activated receptors reverses in myocardial infarction
.
Arterioscler Thromb Vasc Biol
.
2021
;
41
(
1
):
390
-
400
.
42.
Estevez
B
,
Kim
K
,
Delaney
MK
, et al
.
Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation
.
Blood
.
2016
;
127
(
5
):
626
-
636
.
43.
Li
J
,
van der Wal
DE
,
Zhu
G
, et al
.
Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia
.
Nat Commun
.
2015
;
6
:
7737
.
44.
Bergmeier
W
,
Bouvard
D
,
Eble
JA
, et al
.
Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibalpha
.
J Biol Chem
.
2001
;
276
(
27
):
25121
-
25126
.
45.
Zhang
Y
,
Ehrlich
SM
,
Zhu
C
,
Du
X
.
Signaling mechanisms of the platelet glycoprotein Ib-IX complex
.
Platelets
.
2022
;
33
(
6
):
823
-
832
.
46.
Matsuda
J
,
Wakasugi
K
,
Saitoh
N
, et al
.
Low beta 2-glycoprotein I levels in patients with disseminated intravascular coagulation
.
Am J Hematol
.
1993
;
42
(
2
):
234
-
235
.
47.
Nimpf
J
,
Gries
A
,
Wurm
H
,
Kostner
GM
.
Influence of β2-glycoprotein-I upon the content of cAMP and cGMP in human blood platelets
.
Thromb Haemost
.
1985
;
54
(
4
):
824
-
827
.
48.
Kahn
ML
,
Nakanishi-Matsui
M
,
Shapiro
MJ
,
Ishihara
H
,
Coughlin
SR
.
Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin
.
J Clin Invest
.
1999
;
103
(
6
):
879
-
887
.
49.
Han
X
,
Bouck
EG
,
Zunica
ER
,
Arachiche
A
,
Nieman
MT
. 13-Protease-activated receptors. In:
Michelson
AD
, eds.
Platelets
. 4th ed.
Academic Press
;
2019
:
243
-
257
.
50.
Yeung
J
,
Li
W
,
Holinstat
M
.
Platelet signaling and disease: targeted therapy for thrombosis and other related diseases
.
Pharmacol Rev
.
2018
;
70
(
3
):
526
-
548
.
51.
Holinstat
M
,
Voss
B
,
Bilodeau
ML
,
McLaughlin
JN
,
Cleator
J
,
Hamm
HE
.
PAR4, but not PAR1, signals human platelet aggregation via Ca2+ mobilization and synergistic P2Y12 receptor activation
.
J Biol Chem
.
2006
;
281
(
36
):
26665
-
26674
.
52.
Nakanishi-Matsui
M
,
Zheng
YW
,
Sulciner
DJ
,
Weiss
EJ
,
Ludeman
MJ
,
Coughlin
SR
.
PAR3 is a cofactor for PAR4 activation by thrombin
.
Nature
.
2000
;
404
(
6778
):
609
-
613
.
53.
Ramakrishnan
V
,
DeGuzman
F
,
Bao
M
,
Hall
SW
,
Leung
LL
,
Phillips
DR
.
A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V
.
Proc Natl Acad Sci U S A
.
2001
;
98
(
4
):
1823
-
1828
.
54.
Cornelissen
I
,
Palmer
D
,
David
T
, et al
.
Roles and interactions among protease-activated receptors and P2ry12 in hemostasis and thrombosis
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
43
):
18605
-
18610
.
55.
Weiss
EJ
,
Hamilton
JR
,
Lease
KE
,
Coughlin
SR
.
Protection against thrombosis in mice lacking PAR3
.
Blood
.
2002
;
100
(
9
):
3240
-
3244
.
56.
Yasuda
S
,
Tsutsumi
A
,
Chiba
H
, et al
.
Beta(2)-glycoprotein I deficiency: prevalence, genetic background and effects on plasma lipoprotein metabolism and hemostasis
.
Atherosclerosis
.
2000
;
152
(
2
):
337
-
346
.
57.
Takeuchi
R
,
Atsumi
T
,
Ieko
M
, et al
.
Coagulation and fibrinolytic activities in 2 siblings with beta(2)-glycoprotein I deficiency
.
Blood
.
2000
;
96
(
4
):
1594
-
1595
.
58.
Bancsi
LF
,
van der Linden
IK
,
Bertina
RM
.
Beta 2-glycoprotein I deficiency and the risk of thrombosis
.
Thromb Haemost
.
1992
;
67
(
6
):
649
-
653
.
59.
Zhu
W
,
Gregory
JC
,
Org
E
, et al
.
Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk
.
Cell
.
2016
;
165
(
1
):
111
-
124
.
60.
Hasan
RA
,
Koh
AY
,
Zia
A
.
The gut microbiome and thromboembolism
.
Thromb Res
.
2020
;
189
:
77
-
87
.
61.
Kiouptsi
K
,
Reinhardt
C
.
Contribution of the commensal microbiota to atherosclerosis and arterial thrombosis
.
Br J Pharmacol
.
2018
;
175
(
24
):
4439
-
4449
.
62.
White
TA
,
Pan
S
,
Witt
TA
,
Simari
RD
.
Murine strain differences in hemostasis and thrombosis and tissue factor pathway inhibitor
.
Thromb Res
.
2010
;
125
(
1
):
84
-
89
.
You do not currently have access to this content.
Sign in via your Institution