• Contact pathway–initiated thrombin generation is increased in C1INH-deficient humans and mice.

  • Venous, but not arterial, thrombosis is increased in C1INH-deficient mice.

C1 inhibitor (C1INH) is a multifunctional serine protease inhibitor that functions as a major negative regulator of several biological pathways, including the contact pathway of blood coagulation. In humans, congenital C1INH deficiency results in a rare episodic bradykinin-mediated swelling disorder called hereditary angioedema (HAE). Patients with C1INH deficiency–associated HAE (C1INH-HAE) have increased circulating markers of activation of coagulation. Furthermore, we recently reported that patients with C1INH-HAE had a moderate but significant increased risk of venous thromboembolism. To further investigate the impact of C1INH deficiency on activation of coagulation and thrombosis, we conducted studies using patient samples and mouse models. Plasmas from patients with C1INH-HAE had significantly increased contact pathway–mediated thrombin generation. C1INH-deficient mice, which have been used as a model of C1INH-HAE, had significantly increased baseline circulating levels of prothrombin fragment 1+2 and thrombin-antithrombin complexes. In addition, whole blood from C1INH-deficient mice supported significantly increased contact pathway–mediated thrombin generation. Importantly, C1INH-deficient mice exhibited significantly enhanced venous, but not arterial, thrombus formation. Furthermore, purified human C1INH normalized contact pathway–mediated thrombin generation and venous thrombosis in C1INH-deficient mice. These findings highlight a key role for endogenous C1INH as a negative regulator of contact pathway–mediated coagulation in humans and mice. Further, this work identifies endogenous C1INH as an important negative regulator of venous thrombus formation in mice, complementing the phenotype associated with C1INH-HAE.

1.
Davis
AE
,
Mejia
P
,
Lu
F
.
Biological activities of C1 inhibitor
.
Mol Immunol
.
2008
;
45
(
16
):
4057
-
4063
.
2.
Grover
SP
,
Mackman
N
.
Anticoagulant SERPINs: endogenous regulators of hemostasis and thrombosis
.
Front Cardiovasc Med
.
2022
;
9
:
878199
.
3.
Ratnoff
OD
,
Lepow
IH
.
Some properties of an esterase derived from preparations of the first component of complement
.
J Exp Med
.
1957
;
106
(
2
):
327
-
343
.
4.
Wong
NK
,
Kojima
M
,
Dobo
J
,
Ambrus
G
,
Sim
RB
.
Activities of the MBL-associated serine proteases (MASPs) and their regulation by natural inhibitors
.
Mol Immunol
.
1999
;
36
(
13-14
):
853
-
861
.
5.
Forbes
CD
,
Pensky
J
,
Ratnoff
OD
.
Inhibition of activated Hageman factor and activated plasma thromboplastin antecedent by purified serum C1 inactivator
.
J Lab Clin Med
.
1970
;
76
(
5
):
809
-
815
.
6.
Schapira
M
,
Scott
CF
,
Colman
RW
.
Contribution of plasma protease inhibitors to the inactivation of kallikrein in plasma
.
J Clin Invest
.
1982
;
69
(
2
):
462
-
468
.
7.
Busse
PJ
,
Christiansen
SC
.
Hereditary angioedema
.
N Engl J Med
.
2020
;
382
(
12
):
1136
-
1148
.
8.
Ponard
D
,
Gaboriaud
C
,
Charignon
D
, et al
.
SERPING1 mutation update: mutation spectrum and C1 inhibitor phenotypes
.
Hum Mutat
.
2020
;
41
(
1
):
38
-
57
.
9.
Bjorkqvist
J
,
de Maat
S
,
Lewandrowski
U
, et al
.
Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III
.
J Clin Invest
.
2015
;
125
(
8
):
3132
-
3146
.
10.
Dickeson
SK
,
Kumar
S
,
Sun
MF
, et al
.
A mechanism for hereditary angioedema caused by a lysine 311-to-glutamic acid substitution in plasminogen
.
Blood
.
2022
;
139
(
18
):
2816
-
2829
.
11.
Bork
K
,
Wulff
K
,
Rossmann
H
, et al
.
Hereditary angioedema cosegregating with a novel kininogen 1 gene mutation changing the N-terminal cleavage site of bradykinin
.
Allergy
.
2019
;
74
(
12
):
2479
-
2481
.
12.
Kaplan
AP
,
Joseph
K
.
Pathogenesis of hereditary angioedema: the role of the bradykinin-forming cascade
.
Immunol Allergy Clin North Am
.
2017
;
37
(
3
):
513
-
525
.
13.
Sundler Bjorkman
L
,
Persson
B
,
Aronsson
D
,
Skattum
L
,
Nordenfelt
P
,
Egesten
A
.
Comorbidities in hereditary angioedema-a population-based cohort study
.
Clin Transl Allergy
.
2022
;
12
(
3
):
e12135
.
14.
Cugno
M
,
Cicardi
M
,
Bottasso
B
, et al
.
Activation of the coagulation cascade in C1-inhibitor deficiencies
.
Blood
.
1997
;
89
(
9
):
3213
-
3218
.
15.
Cugno
M
,
Zanichelli
A
,
Bellatorre
AG
,
Griffini
S
,
Cicardi
M
.
Plasma biomarkers of acute attacks in patients with angioedema due to C1-inhibitor deficiency
.
Allergy
.
2009
;
64
(
2
):
254
-
257
.
16.
Csuka
D
,
Veszeli
N
,
Imreh
E
, et al
.
Comprehensive study into the activation of the plasma enzyme systems during attacks of hereditary angioedema due to C1-inhibitor deficiency
.
Orphanet J Rare Dis
.
2015
;
10
:
132
.
17.
Bork
K
,
Witzke
G
.
Shortened activated partial thromboplastin time may help in diagnosing hereditary and acquired angioedema
.
Int Arch Allergy Immunol
.
2016
;
170
(
2
):
101
-
107
.
18.
Grover
SP
,
Sundler Bjorkman
L
,
Egesten
A
,
Moll
S
,
Mackman
N
.
Hereditary angioedema is associated with an increased risk of venous thromboembolism
.
J Thromb Haemost
.
2022
;
20
(
11
):
2703
-
2706
.
19.
Machlus
KR
,
Colby
EA
,
Wu
JR
,
Koch
GG
,
Key
NS
,
Wolberg
AS
.
Effects of tissue factor, thrombomodulin and elevated clotting factor levels on thrombin generation in the calibrated automated thrombogram
.
Thromb Haemost
.
2009
;
102
(
5
):
936
-
944
.
20.
Wan
J
,
Tanratana
P
,
Roest
M
, et al
.
A novel mouse whole blood thrombin generation assay sensitive to FXI- and FIX-mediated amplification of coagulation. Blood Adv
. Published online 30 December 2022.. https://doi.org/10.1182/bloodadvances.2022008720.
21.
Wan
J
,
Konings
J
,
Yan
Q
, et al
.
A novel assay for studying the involvement of blood cells in whole blood thrombin generation
.
J Thromb Haemost
.
2020
;
18
(
6
):
1291
-
1301
.
22.
Grover
SP
,
Olson
TM
,
Cooley
BC
,
Mackman
N
.
Model-dependent contributions of FXII and FXI to venous thrombosis in mice
.
J Thromb Haemost
.
2020
;
18
(
11
):
2899
-
2909
.
23.
Lee
RH
,
Kawano
T
,
Grover
SP
, et al
.
Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability
.
J Thromb Haemost
.
2022
;
20
(
2
):
422
-
433
.
24.
Han
ED
,
MacFarlane
RC
,
Mulligan
AN
,
Scafidi
J
,
Davis
AE
.
Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor
.
J Clin Invest
.
2002
;
109
(
8
):
1057
-
1063
.
25.
Oschatz
C
,
Maas
C
,
Lecher
B
, et al
.
Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo
.
Immunity
.
2011
;
34
(
2
):
258
-
268
.
26.
Qiu
T
,
Chiuchiolo
MJ
,
Whaley
AS
, et al
.
Gene therapy for C1 esterase inhibitor deficiency in a Murine Model of hereditary angioedema
.
Allergy
.
2019
;
74
(
6
):
1081
-
1089
.
27.
Shim
YJ
,
Chatterjee
V
,
Swaidani
S
, et al
.
Polyphosphate expression by cancer cell extracellular vesicles mediates binding of factor XII and contact activation
.
Blood Adv
.
2021
;
5
(
22
):
4741
-
4751
.
28.
Gailani
D
,
Renne
T
.
Intrinsic pathway of coagulation and arterial thrombosis
.
Arterioscler Thromb Vasc Biol
.
2007
;
27
(
12
):
2507
-
2513
.
29.
Grover
SP
,
Mackman
N
.
Intrinsic pathway of coagulation and thrombosis
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
3
):
331
-
338
.
30.
Maas
C
,
Renne
T
.
Coagulation factor XII in thrombosis and inflammation
.
Blood
.
2018
;
131
(
17
):
1903
-
1909
.
31.
Raghunathan
V
,
Zilberman-Rudenko
J
,
Olson
SR
,
Lupu
F
,
McCarty
OJT
,
Shatzel
JJ
.
The contact pathway and sepsis
.
Res Pract Thromb Haemost
.
2019
;
3
(
3
):
331
-
339
.
32.
Kaplan
AP
,
Joseph
K
.
Complement, kinins, and hereditary angioedema: mechanisms of plasma instability when C1 inhibitor is absent
.
Clin Rev Allergy Immunol
.
2016
;
51
(
2
):
207
-
215
.
33.
van Geffen
M
,
Cugno
M
,
Lap
P
,
Loof
A
,
Cicardi
M
,
van Heerde
W
.
Alterations of coagulation and fibrinolysis in patients with angioedema due to C1-inhibitor deficiency
.
Clin Exp Immunol
.
2012
;
167
(
3
):
472
-
478
.
34.
Hojima
Y
,
Pierce
JV
,
Pisano
JJ
.
Hageman factor fragment inhibitor in corn seeds: purification and characterization
.
Thromb Res
.
1980
;
20
(
2
):
149
-
162
.
35.
Hansson
KM
,
Nielsen
S
,
Elg
M
,
Deinum
J
.
The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood
.
J Thromb Haemost
.
2014
;
12
(
10
):
1678
-
1686
.
36.
Gailani
D
,
Broze
GJ
.
Factor XI activation in a revised model of blood coagulation
.
Science
.
1991
;
253
(
5022
):
909
-
912
.
37.
Ginsberg
JS
,
Brill-Edwards
P
,
Panju
A
, et al
.
Pre-operative plasma levels of thrombin-antithrombin III complexes correlate with the development of venous thrombosis after major hip or knee surgery
.
Thromb Haemost
.
1995
;
74
(
2
):
602
-
605
.
38.
Cofrancesco
E
,
Cortellaro
M
,
Corradi
A
,
Ravasi
F
,
Bertocchi
F
.
Coagulation activation markers in the prediction of venous thrombosis after elective hip surgery
.
Thromb Haemost
.
1997
;
77
(
2
):
267
-
269
.
39.
Andreescu
ACM
,
Cushman
M
,
Rosendaal
FR
.
D-dimer as a risk factor for deep vein thrombosis: the Leiden Thrombophilia study
.
Thromb Haemost
.
2002
;
87
(
1
):
47
-
51
.
40.
Hansen
ES
,
Rinde
FB
,
Edvardsen
MS
, et al
.
Elevated plasma D-dimer levels are associated with risk of future incident venous thromboembolism
.
Thromb Res
.
2021
;
208
:
121
-
126
.
41.
Lutsey
PL
,
Folsom
AR
,
Heckbert
SR
,
Cushman
M
.
Peak thrombin generation and subsequent venous thromboembolism: the Longitudinal Investigation of Thromboembolism Etiology (LITE) study
.
J Thromb Haemost
.
2009
;
7
(
10
):
1639
-
1648
.
42.
Gohil
R
,
Peck
G
,
Sharma
P
.
The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls
.
Thromb Haemost
.
2009
;
102
(
2
):
360
-
370
.
43.
Koster
T
,
Rosendaal
FR
,
de Ronde
H
,
Briet
E
,
Vandenbroucke
JP
,
Bertina
RM
.
Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study
.
Lancet
.
1993
;
342
(
8886-8887
):
1503
-
1506
.
44.
Blom
JW
,
Doggen
CJM
,
Osanto
S
,
Rosendaal
FR
.
Malignancies, prothrombotic mutations, and the risk of venous thrombosis
.
JAMA
.
2005
;
293
(
6
):
715
-
722
.
45.
Bank
I
,
Libourel
EJ
,
Middeldorp
S
, et al
.
Prothrombin 20210A mutation: a mild risk factor for venous thromboembolism but not for arterial thrombotic disease and pregnancy-related complications in a family study
.
Arch Intern Med
.
2004
;
164
(
17
):
1932
-
1937
.
46.
Emmerich
J
,
Rosendaal
FR
,
Cattaneo
M
, et al
.
Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism--pooled analysis of 8 case-control studies including 2310 cases and 3204 controls. Study Group for Pooled-Analysis in Venous Thromboembolism
.
Thromb Haemost
.
2001
;
86
(
3
):
809
-
816
.
47.
Jensen
SB
,
Hindberg
K
,
Solomon
T
, et al
.
Discovery of novel plasma biomarkers for future incident venous thromboembolism by untargeted synchronous precursor selection mass spectrometry proteomics
.
J Thromb Haemost
.
2018
;
16
(
9
):
1763
-
1774
.
48.
Diaz
JA
,
Saha
P
,
Cooley
B
, et al
.
Choosing a mouse model of venous thrombosis
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
3
):
311
-
318
.
49.
Bird
JE
,
Smith
PL
,
Wang
X
, et al
.
Effects of plasma kallikrein deficiency on haemostasis and thrombosis in mice: murine ortholog of the Fletcher trait
.
Thromb Haemost
.
2012
;
107
(
6
):
1141
-
1150
.
50.
von Bruhl
ML
,
Stark
K
,
Steinhart
A
, et al
.
Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
.
J Exp Med
.
2012
;
209
(
4
):
819
-
835
.
51.
Revenko
AS
,
Gao
D
,
Crosby
JR
, et al
.
Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding
.
Blood
.
2011
;
118
(
19
):
5302
-
5311
.
52.
Salomon
O
,
Steinberg
DM
,
Zucker
M
,
Varon
D
,
Zivelin
A
,
Seligsohn
U
.
Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis
.
Thromb Haemost
.
2011
;
105
(
2
):
269
-
273
.
53.
Preis
M
,
Hirsch
J
,
Kotler
A
, et al
.
Factor XI deficiency is associated with lower risk for cardiovascular and venous thromboembolism events
.
Blood
.
2017
;
129
(
9
):
1210
-
1215
.
54.
Cushman
M
,
O'Meara
ES
,
Folsom
AR
,
Heckbert
SR
.
Coagulation factors IX through XIII and the risk of future venous thrombosis: the longitudinal investigation of thromboembolism etiology
.
Blood
.
2009
;
114
(
14
):
2878
-
2883
.
55.
Meijers
JC
,
Tekelenburg
WL
,
Bouma
BN
,
Bertina
RM
,
Rosendaal
FR
.
High levels of coagulation factor XI as a risk factor for venous thrombosis
.
N Engl J Med
.
2000
;
342
(
10
):
696
-
701
.
56.
Zeerleder
S
,
Schloesser
M
,
Redondo
M
, et al
.
Reevaluation of the incidence of thromboembolic complications in congenital factor XII deficiency--a study on 73 subjects from 14 Swiss families
.
Thromb Haemost
.
1999
;
82
(
4
):
1240
-
1246
.
57.
Girolami
A
,
Candeo
N
,
De Marinis
GB
,
Bonamigo
E
,
Girolami
B
.
Comparative incidence of thrombosis in reported cases of deficiencies of factors of the contact phase of blood coagulation
.
J Thromb Thrombolysis
.
2011
;
31
(
1
):
57
-
63
.
58.
Girolami
A
,
Allemand
E
,
Bertozzi
I
,
Candeo
N
,
Marun
S
,
Girolami
B
.
Thrombotic events in patients with congenital prekallikrein deficiency: a critical evaluation of all reported cases
.
Acta Haematol
.
2010
;
123
(
4
):
210
-
214
.
59.
Koster
T
,
Rosendaal
FR
,
Briet
E
,
Vandenbroucke
JP
.
John Hageman's factor and deep-vein thrombosis: Leiden thrombophilia study
.
Br J Haematol
.
1994
;
87
(
2
):
422
-
424
.
60.
Kaplan
AP
,
Kay
AB
,
Austen
KF
.
A prealbumin activator of prekallikrein. 3. Appearance of chemotactic activity for human neutrophils by the conversion of human prekallikrein to kallikrein
.
J Exp Med
.
1972
;
135
(
1
):
81
-
97
.
61.
Wiggins
RC
,
Giclas
PC
,
Henson
PM
.
Chemotactic activity generated from the fifth component of complement by plasma kallikrein of the rabbit
.
J Exp Med
.
1981
;
153
(
6
):
1391
-
1404
.
62.
Norgaard
I
,
Nielsen
SF
,
Nordestgaard
BG
.
Complement C3 and high risk of venous thromboembolism: 80517 individuals from the Copenhagen General Population Study
.
Clin Chem
.
2016
;
62
(
3
):
525
-
534
.
63.
Skjeflo
EW
,
Braekkan
SK
,
Ludviksen
JK
, et al
.
Elevated plasma concentration of complement factor C5 is associated with risk of future venous thromboembolism
.
Blood
.
2021
;
138
(
21
):
2129
-
2137
.
64.
Damoah
CE
,
Snir
O
,
Hindberg
K
, et al
.
High levels of complement activating enzyme MASP-2 are associated with the risk of future incident venous thromboembolism
.
Arterioscler Thromb Vasc Biol
.
2022
;
42
(
9
):
1186
-
1197
.
65.
Subramaniam
S
,
Jurk
K
,
Hobohm
L
, et al
.
Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development
.
Blood
.
2017
;
129
(
16
):
2291
-
2302
.
66.
Sanderson
SD
,
Kirnarsky
L
,
Sherman
SA
,
Ember
JA
,
Finch
AM
,
Taylor
SM
.
Decapeptide agonists of human C5a: the relationship between conformation and spasmogenic and platelet aggregatory activities
.
J Med Chem
.
1994
;
37
(
19
):
3171
-
3180
.
67.
Ferrer-Lopez
P
,
Renesto
P
,
Schattner
M
,
Bassot
S
,
Laurent
P
,
Chignard
M
.
Activation of human platelets by C5a-stimulated neutrophils: a role for cathepsin G
.
Am J Physiol
.
1990
;
258
(
6 Pt 1
):
C1100
-
1107
.
68.
Aiello
S
,
Gastoldi
S
,
Galbusera
M
, et al
.
C5a and C5aR1 are key drivers of microvascular platelet aggregation in clinical entities spanning from aHUS to COVID-19
.
Blood Adv
.
2022
;
6
(
3
):
866
-
881
.
69.
Grossklaus
C
,
Damerau
B
,
Lemgo
E
,
Vogt
W
.
Induction of platelet aggregation by the complement-derived peptides C3a and C5a
.
Naunyn Schmiedebergs Arch Pharmacol
.
1976
;
295
(
1
):
71
-
76
.
70.
Sauter
RJ
,
Sauter
M
,
Reis
ES
, et al
.
Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis
.
Circulation
.
2018
;
138
(
16
):
1720
-
1735
.
71.
Krarup
A
,
Wallis
R
,
Presanis
JS
,
Gal
P
,
Sim
RB
.
Simultaneous activation of complement and coagulation by MBL-associated serine protease 2
.
PLoS One
.
2007
;
2
(
7
):
e623
.
72.
Gulla
KC
,
Gupta
K
,
Krarup
A
, et al
.
Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot
.
Immunology
.
2010
;
129
(
4
):
482
-
495
.
73.
Conway
EM
.
Reincarnation of ancient links between coagulation and complement
.
J Thromb Haemost
.
2015
;
13
(
Suppl 1
):
S121
-
132
.
74.
Pryzdial
ELG
,
Leatherdale
A
,
Conway
EM
.
Coagulation and complement: key innate defense participants in a seamless web
.
Front Immunol
.
2022
;
13
:
918775
.
75.
Kaplan
AP
,
Ghebrehiwet
B
.
The plasma bradykinin-forming pathways and its interrelationships with complement
.
Mol Immunol
.
2010
;
47
(
13
):
2161
-
2169
.
76.
Rosen
ED
,
Gailani
D
,
Castellino
FJ
.
FXI is essential for thrombus formation following FeCl3-induced injury of the carotid artery in the mouse
.
Thromb Haemost
.
2002
;
87
(
4
):
774
-
776
.
77.
Wang
X
,
Cheng
Q
,
Xu
L
, et al
.
Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice
.
J Thromb Haemost
.
2005
;
3
(
4
):
695
-
702
.
78.
Cheng
Q
,
Tucker
EI
,
Pine
MS
, et al
.
A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo
.
Blood
.
2010
;
116
(
19
):
3981
-
3989
.
79.
Kokoye
Y
,
Ivanov
I
,
Cheng
Q
, et al
.
A comparison of the effects of factor XII deficiency and prekallikrein deficiency on thrombus formation
.
Thromb Res
.
2016
;
140
:
118
-
124
.
80.
Tchaikovski
SN
,
VAN Vlijmen
BJM
,
Rosing
J
,
Tans
G
.
Development of a calibrated automated thrombography based thrombin generation test in mouse plasma
.
J Thromb Haemost
.
2007
;
5
(
10
):
2079
-
2086
.
81.
Dargaud
Y
,
Spronk
HMH
,
Leenders
P
,
Hemker
HC
,
Ten Cate
H
.
Monitoring platelet dependent thrombin generation in mice
.
Thromb Res
.
2010
;
126
(
5
):
436
-
441
.
82.
Gadek
JE
,
Hosea
SW
,
Gelfand
JA
, et al
.
Replacement therapy in hereditary angioedema: successful treatment of acute episodes of angioedema with partly purified C1 inhibitor
.
N Engl J Med
.
1980
;
302
(
10
):
542
-
546
.
83.
Zuraw
BL
,
Busse
PJ
,
White
M
, et al
.
Nanofiltered C1 inhibitor concentrate for treatment of hereditary angioedema
.
N Engl J Med
.
2010
;
363
(
6
):
513
-
522
.
84.
Gregorek
H
,
Kokai
M
,
Hidvegi
T
,
Fust
G
,
Sabbouh
K
,
Madaliński
K
.
Concentration of C1 inhibitor in sera of healthy blood donors as studied by immunoenzymatic assay
.
Complement Inflamm
.
1991
;
8
(
5-6
):
310
-
312
.
85.
Farkas
H
,
Kőhalmi
KV
,
Veszeli
N
,
Zotter
Z
,
Varnai
K
,
Varga
L
.
Risk of thromboembolism in patients with hereditary angioedema treated with plasma-derived C1-inhibitor
.
Allergy Asthma Proc
.
2016
;
37
(
2
):
164
-
170
.
You do not currently have access to this content.
Sign in via your Institution