TO THE EDITOR:

The cyclic adenosine monophosphate response element-binding protein (CREBBP) gene is located on chromosome 16p13 and encodes a histone acetyltransferase having the same name that is involved in transcriptional regulation and cell cycle control.1,2 The translocation t(8;16)(p11;p13)[KAT6A::CREBBP] results in the disruption of CREBBP as well as its fusion to KAT6A, another gene important in transcription control. This fusion is sufficient for leukemogenesis and leads to a rare but well described type of acute myeloid leukemia (AML) with consistent biologic characteristics and a distinct gene expression profile.3-8 Although generally associated with inferior outcomes among adults, including a recent adjustment made by the European LeukemiaNet toward the adverse-risk group, there are variable reports regarding the prognostic significance of this fusion among pediatric patients.4,7,9 This prognostic variability is partially...

1.
Chan
HM
,
La Thangue
NB
.
p300/CBP proteins: HATs for transcriptional bridges and scaffolds
.
J Cell Sci
.
2001
;
114
(
Pt 13
):
2363
-
2373
.
2.
Shiama
N
.
The p300/CBP family: integrating signals with transcription factors and chromatin
.
Trends Cell Biol
.
1997
;
7
(
6
):
230
-
236
.
3.
Camos
M
,
Esteve
J
,
Jares
P
, et al
.
Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression
.
Cancer Res
.
2006
;
66
(
14
):
6947
-
6954
.
4.
Coenen
EA
,
Zwaan
CM
,
Reinhardt
D
, et al
.
Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Munster AML-study group
.
Blood
.
2013
;
122
(
15
):
2704
-
2713
.
5.
Diaz-Beya
M
,
Navarro
A
,
Ferrer
G
, et al
.
Acute myeloid leukemia with translocation (8;16)(p11;p13) and MYST3-CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene
.
Leukemia
.
2013
;
27
(
3
):
595
-
603
.
6.
Gervais
C
,
Murati
A
,
Helias
C
, et al
.
Acute myeloid leukaemia with 8p11 (MYST3) rearrangement: an integrated cytologic, cytogenetic and molecular study by the groupe francophone de cytogenetique hematologique
.
Leukemia
.
2008
;
22
(
8
):
1567
-
1575
.
7.
Haferlach
T
,
Kohlmann
A
,
Klein
HU
, et al
.
AML with translocation t(8;16)(p11;p13) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features
.
Leukemia
.
2009
;
23
(
5
):
934
-
943
.
8.
Xie
W
,
Hu
S
,
Xu
J
,
Chen
Z
,
Medeiros
LJ
,
Tang
G
.
Acute myeloid leukemia with t(8;16)(p11.2;p13.3)/KAT6A-CREBBP in adults
.
Ann Hematol
.
2019
;
98
(
5
):
1149
-
1157
.
9.
Dohner
H
,
Wei
AH
,
Appelbaum
FR
, et al
.
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN
.
Blood
.
2022
;
140
(
12
):
1345
-
1377
.
10.
Barrett
R
,
Morash
B
,
Roback
D
, et al
.
FISH identifies a KAT6A/CREBBP fusion caused by a cryptic insertional t(8;16) in a case of spontaneously remitting congenital acute myeloid leukemia with a normal karyotype
.
Pediatr Blood Cancer
.
2017
;
64
(
8
):
e26450
.
11.
Classen
CF
,
Behnisch
W
,
Reinhardt
D
,
Koenig
M
,
Moller
P
,
Debatin
KM
.
Spontaneous complete and sustained remission of a rearrangement CBP (16p13)-positive disseminated congenital myelosarcoma
.
Ann Hematol
.
2005
;
84
(
4
):
274
-
275
.
12.
Dinulos
JG
,
Hawkins
DS
,
Clark
BS
,
Francis
JS
.
Spontaneous remission of congenital leukemia
.
J Pediatr
.
1997
;
131
(
2
):
300
-
303
.
13.
Hanada
T
,
Ono
I
,
Minosaki
Y
,
Moriyama
N
,
Nakahara
S
,
Ohtsu
A
.
Translocation t(8;16)(p11;p13) in neonatal acute monocytic leukaemia
.
Eur J Pediatr
.
1991
;
150
(
5
):
323
-
324
.
14.
Liu
M
,
Ren
Y
,
Wang
X
, et al
.
Two rare cases of acute myeloid leukemia with t(8;16)(p11.2;p13.3) and 1q duplication: case presentation and literature review
.
Mol Cytogenet
.
2020
;
13
(
1
):
1
-
9
.
15.
Wong
KF
,
Yuen
HL
,
Siu
LL
,
Pang
A
,
Kwong
YL
.
t(8;16)(p11;p13) predisposes to a transient but potentially recurring neonatal leukemia
.
Hum Pathol
.
2008
;
39
(
11
):
1702
-
1707
.
16.
Wu
X
,
Sulavik
D
,
Roulston
D
,
Lim
MS
.
Spontaneous remission of congenital acute myeloid leukemia with t(8;16)(p11;13)
.
Pediatr Blood Cancer
.
2011
;
56
(
2
):
331
-
332
.
17.
Andrade
FG
,
Noronha
EP
,
Baseggio
RM
, et al
.
Identification of the MYST3-CREBBP fusion gene in infants with acute myeloid leukemia and hemophagocytosis
.
Rev Bras Hematol Hemoter
.
2016
;
38
(
4
):
291
-
297
.
18.
Hagiwara
K
,
Ding
L
,
Edmonson
MN
, et al
.
RNAIndel: discovering somatic coding indels from tumor RNA-Seq data
.
Bioinformatics
.
2020
;
36
(
5
):
1382
-
1390
.
19.
Cancer Genome Atlas Research
N
,
Ley
TJ
,
Miller
C
, et al
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
20.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
21.
Ross
ME
,
Mahfouz
R
,
Onciu
M
, et al
.
Gene expression profiling of pediatric acute myelogenous leukemia
.
Blood
.
2004
;
104
(
12
):
3679
-
3687
.
22.
Hellwig
M
,
Merk
DJ
,
Lutz
B
,
Schuller
U
.
Preferential sensitivity to HDAC inhibitors in tumors with CREBBP mutation
.
Cancer Gene Ther
.
2020
;
27
(
5
):
294
-
300
.
23.
Mondello
P
,
Tadros
S
,
Teater
M
, et al
.
Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma
.
Cancer Discov
.
2020
;
10
(
3
):
440
-
459
.
You do not currently have access to this content.
Sign in via your Institution