• The absence of NGAL results in hemophilia-like bleeding and clotting dysfunction.

  • NGAL facilitates the cross talk between the innate immune system and coagulation.

Abstract

Coagulation is related to inflammation, but the key pathway, especially innate immune system and coagulation regulation, is not well understood and need to be further explored. Here, we demonstrated that neutrophil gelatinase-associated lipocalin (NGAL), an innate immune inflammatory mediator, is upregulated in patients with thrombosis. Furthermore, it contributes to the initiation and amplification of coagulation, hemostasis, and thrombosis. This occurs by enhancing tissue factor expression on the cell surface, potentiating various clotting factors such as thrombin, kallikrein, factor XIa (FXIa), and FVIIa, promoting thrombin-induced platelet aggregation, and inhibiting antithrombin. NGAL knockout led to strikingly prolonged clot reaction time and kinetic time in thromboelastography analysis, along with reduced thrombus generation angle and lower thrombus maximum amplitude, which were in line with remarkably prolonged activated partial thromboplastin time and prothrombin time. In several mouse hemostasis and thrombosis models, NGAL overexpression or IV administration promoted coagulation and hemostasis and aggravated thrombosis, whereas NGAL knockout or treatment with anti-NGAL monoclonal antibody significantly prolonged bleeding time and alleviated thrombus formation. Notably, NGAL knockout prolonged mouse tail bleeding time or artery occlusion time to over 40 or 60 minutes, respectively, resembling uncontrollable bleeding and clotting disorder seen in hemophilic mice. Furthermore, anti-NGAL monoclonal antibody treatment markedly reduced the formation of blood clots in inflammation-induced thrombosis models. Collectively, these findings unveil a previously unidentified role of NGAL in the processes of coagulation, hemostasis, and thrombosis, as well as the cross talk between innate immunity, inflammation, and coagulation. Thus, modulating NGAL levels could potentially help balance thrombotic and hemorrhagic risks.

1.
Foley
JH
,
Conway
EM
.
Cross talk pathways between coagulation and inflammation
.
Circ Res
.
2016
;
118
(
9
):
1392
-
1408
.
2.
Stark
K
,
Massberg
S
.
Interplay between inflammation and thrombosis in cardiovascular pathology
.
Nat Rev Cardiol
.
2021
;
18
(
9
):
666
-
682
.
3.
Esmon
CT
.
The interactions between inflammation and coagulation
.
Br J Haematol
.
2005
;
131
(
4
):
417
-
430
.
4.
Lipinski
S
,
Bremer
L
,
Lammers
T
,
Thieme
F
,
Schreiber
S
,
Rosenstiel
P
.
Coagulation and inflammation. Molecular insights and diagnostic implications
.
Hämostaseologie
.
2011
;
31
(
2
):
94
-
104
.
5.
Levi
M
,
van der Poll
T
,
Büller
HR
.
Bidirectional relation between inflammation and coagulation
.
Circulation
.
2004
;
109
(
22
):
2698
-
2704
.
6.
Schulz
C
,
Engelmann
B
,
Massberg
S
.
Crossroads of coagulation and innate immunity: the case of deep vein thrombosis
.
J Thromb Haemost
.
2013
;
11
(
suppl 1
):
233
-
241
.
7.
Whyte
CS
.
All tangled up: interactions of the fibrinolytic and innate immune systems
.
Front Med
.
2023
;
10
:
1212201
.
8.
Antoniak
S
.
The coagulation system in host defense
.
Res Pract Thromb Haemost
.
2018
;
2
(
3
):
549
-
557
.
9.
Esmon
CT
,
Xu
J
,
Lupu
F
.
Innate immunity and coagulation
.
J Thromb Haemost
.
2011
;
9
(
suppl 1
):
182
-
188
.
10.
Opal
SM
,
Esmon
CT
.
Bench-to-bedside review: Functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis
.
Crit Care
.
2003
;
7
(
1
):
23
-
38
.
11.
Levi
M
,
Keller
TT
,
van Gorp
E
,
ten Cate
H
.
Infection and inflammation and the coagulation system
.
Cardiovasc Res
.
2003
;
60
(
1
):
26
-
39
.
12.
Levi
M
,
van der Poll
T
.
Two-way interactions between inflammation and coagulation
.
Trends Cardiovasc Med
.
2005
;
15
(
7
):
254
-
259
.
13.
van der Poll
T
.
Tissue factor as an initiator of coagulation and inflammation in the lung
.
Crit Care
.
2008
;
12
(
suppl 6
):
S3
.
14.
Demetz
G
,
Ott
I
.
The interface between inflammation and coagulation in cardiovascular disease
.
Int J Inflam
.
2012
;
2012
:
860301
.
15.
Ni
H
,
Ramakrishnan
V
,
Ruggeri
ZM
,
Papalia
JM
,
Phillips
DR
,
Wagner
DD
.
Increased thrombogenesis and embolus formation in mice lacking glycoprotein V
.
Blood
.
2001
;
98
(
2
):
368
-
373
.
16.
Coughlin
SR
.
Thrombin signalling and protease-activated receptors
.
Nature
.
2000
;
407
(
6801
):
258
-
264
.
17.
van der Poll
T
,
de Boer
JD
,
Levi
M
.
The effect of inflammation on coagulation and vice versa
.
Curr Opin Infect Dis
.
2011
;
24
(
3
):
273
-
278
.
18.
Esmon
CT
,
Fukudome
K
,
Mather
T
, et al
.
Inflammation, sepsis, and coagulation
.
Haematologica
.
1999
;
84
(
3
):
254
-
259
.
19.
Margetic
S
.
Inflammation and haemostasis
.
Biochem Med
.
2012
;
22
(
1
):
49
-
62
.
20.
Keragala
CB
,
Draxler
DF
,
McQuilten
ZK
,
Medcalf
RL
.
Haemostasis and innate immunity - a complementary relationship: a review of the intricate relationship between coagulation and complement pathways
.
Br J Haematol
.
2018
;
180
(
6
):
782
-
798
.
21.
Chen
WA
,
Williams
TG
,
So
L
, et al
.
Neutrophil extracellular DNA traps in response to infection or inflammation, and the roles of platelet interactions
.
Int J Mol Sci
.
2024
;
25
(
8
):
4342
.
22.
Xu
XR
,
Zhang
D
,
Oswald
BE
, et al
.
Platelets are versatile cells: new discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond
.
Crit Rev Clin Lab Sci
.
2016
;
53
(
6
):
409
-
430
.
23.
Engelmann
B
,
Massberg
S
.
Innate immunity, coagulation, and thrombosis
.
Blood
.
2014
;
124
(
21
):
SCI-28
.
24.
Jiang
D
,
Jiao
L
,
Li
Q
, et al
.
Neutrophil-derived migrasomes are an essential part of the coagulation system
.
Nat Cell Biol
.
2024
;
26
(
7
):
1110
-
1123
.
25.
Lekstrom-Himes
JA
,
Dorman
SE
,
Kopar
P
,
Holland
SM
,
Gallin
JI
.
Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon
.
J Exp Med
.
1999
;
189
(
11
):
1847
-
1852
.
26.
Buonafine
M
,
Martinez-Martinez
E
,
Jaisser
F
.
More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases
.
Clin Sci
.
2018
;
132
(
9
):
909
-
923
.
27.
Zhao
RY
,
Wei
PJ
,
Sun
X
, et al
.
Role of lipocalin 2 in stroke
.
Neurobiol Dis
.
2023
;
179
:
106044
.
28.
Tang
X
,
Zhang
Z
,
Fang
M
, et al
.
Transferrin plays a central role in coagulation balance by interacting with clotting factors
.
Cell Res
.
2020
;
30
(
2
):
119
-
132
.
29.
Tang
X
,
Fang
M
,
Cheng
R
, et al
.
Iron-deficiency and estrogen are associated with ischemic stroke by up-regulating transferrin to induce hypercoagulability
.
Circ Res
.
2020
;
127
(
5
):
651
-
663
.
30.
Li
MQ
,
Tang
XP
,
Liao
ZY
, et al
.
Hypoxia and low temperature upregulate transferrin to induce hypercoagulability at high altitude
.
Blood
.
2022
;
140
(
19
):
2063
-
2075
.
31.
Payne
H PT
,
Ponomaryov
T
,
Watson
SP
,
Brill
A
.
Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis
.
Blood
.
2017
;
129
(
14
):
2013
-
2020
.
32.
Chan
MY
,
Andreotti
F
,
Becker
RC
.
Hypercoagulable states in cardiovascular disease
.
Circulation
.
2008
;
118
(
22
):
2286
-
2297
.
33.
Lozier
JN
,
Nichols
TC
.
Animal models of hemophilia and related bleeding disorders
.
Semin Hematol
.
2013
;
50
(
2
):
175
-
184
.
34.
Kung
SH
,
Hagstrom
JN
,
Cass
D
, et al
.
Human factor IX corrects the bleeding diathesis of mice with hemophilia B
.
Blood
.
1998
;
91
(
3
):
784
-
790
.
35.
Tranholm
M
,
Kristensen
K
,
Kristensen
AT
,
Pyke
C
,
Rojkjær
R
,
Persson
E
.
Improved hemostasis with superactive analogs of factor VIIa in a mouse model of hemophilia A
.
Blood
.
2003
;
102
(
10
):
3615
-
3620
.
36.
High
KA
.
Gene transfer as an approach to treating hemophilia
.
Circ Res
.
2001
;
88
(
2
):
137
-
144
.
37.
Marx
I
,
Lenting
PJ
,
Adler
T
,
Pendu
R
,
Christophe
OD
,
Denis
CV
.
Correction of bleeding symptoms in von Willebrand factor-deficient mice by liver-expressed von Willebrand factor mutants
.
Arterioscler Thromb Vasc Biol
.
2008
;
28
(
3
):
419
-
424
.
38.
Arslan
R
,
Bor
Z
,
Bektas
N
,
Mericli
AH
,
Ozturk
Y
.
Antithrombotic effects of ethanol extract of Crataegus orientalis in the carrageenan-induced mice tail thrombosis model
.
Thromb Res
.
2011
;
127
(
3
):
210
-
213
.
39.
Sparrow
CP
,
Burton
CA
,
Hernandez
M
, et al
.
Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering
.
Arterioscler Thromb Vasc Biol
.
2001
;
21
(
1
):
115
-
121
.
40.
Chmelar
J
,
Oliveira
CJ
,
Rezacova
P
, et al
.
A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation
.
Blood
.
2011
;
117
(
2
):
736
-
744
.
41.
Yanada
M
,
Kojima
T
,
Ishiguro
K
, et al
.
Impact of antithrombin deficiency in thrombogenesis: lipopolysaccharide and stress-induced thrombus formation in heterozygous antithrombin-deficient mice
.
Blood
.
2002
;
99
(
7
):
2455
-
2458
.
42.
Medzhitov
R
,
Janeway
C
.
Jr. Innate immunity
.
N Engl J Med
.
2000
;
343
(
5
):
338
-
344
.
43.
Beutler
B
.
Innate immunity: an overview
.
Mol Immunol
.
2004
;
40
(
12
):
845
-
859
.
44.
Rosales
C
.
Neutrophil: a cell with many roles in inflammation or several cell types?
.
Front Physiol
.
2018
;
9
:
113
.
45.
Kapoor
S
,
Opneja
A
,
Nayak
L
.
The role of neutrophils in thrombosis
.
Thromb Res
.
2018
;
170
:
87
-
96
.
46.
von Bruhl
ML
,
Stark
K
,
Steinhart
A
, et al
.
Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
.
J Exp Med
.
2012
;
209
(
4
):
819
-
835
.
47.
Kimball
AS
,
Obi
AT
,
Diaz
JA
,
Henke
PK
.
The emerging role of NeTs in venous thrombosis and immunothrombosis
.
Front Immunol
.
2016
;
7
:
236
. 8.
48.
Thålin
C
,
Hisada
Y
,
Lundström
S
,
Mackman
N
,
Wallén
H
.
Neutrophil extracellular traps villains and targets in arterial, venous, and cancer-associated thrombosis
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
9
):
1724
-
1738
.
49.
Colling
ME
,
Tourdot
BE
,
Kanthi
Y
.
Inflammation, infection and venous thromboembolism
.
Circ Res
.
2021
;
128
(
12
):
2017
-
2036
.
50.
Bolignano
D
,
Donato
V
,
Coppolino
G
, et al
.
Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage
.
Am J Kidney Dis
.
2008
;
52
(
3
):
595
-
605
.
51.
Davis
R
,
Bansal
V
,
Litinas
E
, et al
.
Upregulation of inflammatory mediators in end-stage renal disease as measured using biochip array technology
.
Clin Appl Thromb Hemost
.
2011
;
17
(
6
):
E218
-
E223
.
52.
Mishra
J
,
Dent
C
,
Tarabishi
R
, et al
.
Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery
.
Lancet
.
2005
;
365
(
9466
):
1231
-
1238
.
53.
Chakraborty
S
,
Kaur
S
,
Guha
S
,
Batra
SK
.
The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer
.
Biochim Biophys Acta
.
2012
;
1826
(
1
):
129
-
169
.
54.
Jaberi
SA
,
Cohen
A
,
D'Souza
C
, et al
.
Lipocalin-2: structure, function, distribution and role in metabolic disorders
.
Biomed Pharmacother
.
2021
;
142
:
112002
.
55.
Romejko
K
,
Markowska
M
,
Niemczyk
S
.
The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL)
.
Int J Mol Sci
.
2023
;
24
(
13
):
10470
.
56.
Maréchal
P
,
Tridetti
J
,
Nguyen
ML
, et al
.
Neutrophil phenotypes in coronary artery disease
.
J Clin Med
.
2020
;
9
(
5
):
1602
.
57.
Kuplay
H
,
Erdogan
SB
,
Bastopcu
M
,
Arslanhan
G
,
Baykan
DB
,
Orhan
G
.
The neutrophil-lymphocyte ratio and the platelet-lymphocyte ratio correlate with thrombus burden in deep venous thrombosis
.
J Vasc Surg Venous Lymphat Disord
.
2020
;
8
(
3
):
360
-
364
.
58.
Samad
F
,
Ruf
W
.
Inflammation, obesity, and thrombosis
.
Blood
.
2013
;
122
(
20
):
3415
-
3422
.
59.
Bratt
T
,
Ohlson
S
,
Borregaard
N
.
Interactions between neutrophil gelatinase-associated lipocalin and natural lipophilic ligands
.
Biochim Biophys Acta
.
1999
;
1472
(
1-2
):
262
-
269
.
60.
Kjeldsen
L
,
Bainton
DF
,
Sengelov
H
,
Borregaard
N
.
Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils
.
Blood
.
1994
;
83
(
3
):
799
-
807
.
61.
Jiang
M
,
Yang
F
,
Jiang
YZ
, et al
.
Blocking human protein C anticoagulant activity improves clotting defects of hemophilia mice expressing human protein C
.
Blood Adv
.
2022
;
6
(
11
):
3304
-
3314
.
62.
Stagaard
R
,
Flick
MJ
,
Bojko
B
, et al
.
Abrogating fibrinolysis does not improve bleeding or rFVIIa/rFVIII treatment in a non-mucosal venous injury model in haemophilic rodents
.
J Thromb Haemost
.
2018
;
16
(
7
):
1369
-
1382
.
63.
Flo
TH
,
Smith
KD
,
Sato
S
, et al
.
Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron
.
Nature
.
2004
;
432
(
7019
):
917
-
921
.
64.
Holmes
MA
,
Paulsene
W
,
Jide
X
,
Ratledge
C
,
Strong
RK
.
Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration
.
Structure
.
2005
;
13
(
1
):
29
-
41
.
You do not currently have access to this content.
Sign in via your Institution