Abstract

It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.

1.
Taher
AT
,
Musallam
KM
,
Cappellini
MD
.
β-thalassemias
.
N Engl J Med
.
2021
;
384
(
8
):
727
-
743
.
2.
Taher
AT
,
Weatherall
DJ
,
Cappellini
MD
.
Thalassaemia
.
Lancet
.
2018
;
391
(
10116
):
155
-
167
.
3.
Piel
FB
,
Steinberg
MH
,
Rees
DC
.
Sickle cell disease
.
N Engl J Med
.
2017
;
376
(
16
):
1561
-
1573
.
4.
Kato
GJ
,
Piel
FB
,
Reid
CD
, et al
.
Sickle cell disease
.
Nat Rev Dis Primers
.
2018
;
4
(
1
):
18010
.
5.
Wood
WG
,
Clegg
JB
,
Weatherall
DJ
.
Developmental biology of human hemoglobins
.
Prog Hematol
.
1977
;
10
:
43
-
90
.
6.
Wood
WG
,
Weatherall
DJ
.
Haemoglobin synthesis during human foetal development
.
Nature
.
1973
;
244
(
5412
):
162
-
165
.
7.
Gale
RE
,
Clegg
JB
,
Huehns
ER
.
Human embryonic haemoglobins Gower 1 and Gower 2
.
Nature
.
1979
;
280
(
5718
):
162
-
164
.
8.
Wood
WG
.
Haemoglobin synthesis during human fetal development
.
Br Med Bull
.
1976
;
32
(
3
):
282
-
287
.
9.
Nienhuis
AW
,
Stamatoyannopoulos
G
.
Hemoglobin switching
.
Cell
.
1978
;
15
(
1
):
307
-
315
.
10.
Lu
HY
,
Orkin
SH
,
Sankaran
VG
.
Fetal hemoglobin regulation in beta-thalassemia
.
Hematol Oncol Clin North Am
.
2023
;
37
(
2
):
301
-
312
.
11.
Steinberg
MH
.
Fetal hemoglobin in sickle cell anemia
.
Blood
.
2020
;
136
(
21
):
2392
-
2400
.
12.
Locatelli
F
,
Cavazzana
M
,
Frangoul
H
,
Fuente
Jdl
,
Algeri
M
,
Meisel
R
.
Autologous gene therapy for hemoglobinopathies: from bench to patient’s bedside
.
Mol Ther
.
2024
;
32
(
5
):
1202
-
1218
.
13.
Canver
MC
,
Lessard
S
,
Pinello
L
, et al
.
Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci
.
Nat Genet
.
2017
;
49
(
4
):
625
-
634
.
14.
Canver
MC
,
Smith
EC
,
Sher
F
, et al
.
BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis
.
Nature
.
2015
;
527
(
7577
):
192
-
197
.
15.
Liu
N
,
Xu
S
,
Yao
Q
, et al
.
Transcription factor competition at the γ-globin promoters controls hemoglobin switching
.
Nat Genet
.
2021
;
53
(
4
):
511
-
520
.
16.
Cheng
L
,
Li
Y
,
Qi
Q
, et al
.
Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression
.
Nat Genet
.
2021
;
53
(
6
):
869
-
880
.
17.
Ravi
NS
,
Wienert
B
,
Wyman
SK
, et al
.
Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin
.
Elife
.
2022
;
11
:
e65421
.
18.
Sher
F
,
Hossain
M
,
Seruggia
D
, et al
.
Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis
.
Nat Genet
.
2019
;
51
(
7
):
1149
-
1159
.
19.
Boontanrart
MY
,
Schröder
MS
,
Stehli
GM
, et al
.
ATF4 regulates MYB to increase γ-globin in response to loss of β-globin
.
Cell Rep
.
2020
;
32
(
5
):
107993
.
20.
Feng
R
,
Mayuranathan
T
,
Huang
P
, et al
.
Activation of γ-globin expression by hypoxia-inducible factor 1α
.
Nature
.
2022
;
610
(
7933
):
783
-
790
.
21.
Qin
K
,
Huang
P
,
Feng
R
, et al
.
Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells
.
Nat Genet
.
2022
;
54
(
6
):
874
-
884
.
22.
Grevet
JD
,
Lan
X
,
Hamagami
N
, et al
.
Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells
.
Science
.
2018
;
361
(
6399
):
285
-
290
.
23.
Huang
P
,
Peslak
SA
,
Ren
R
, et al
.
HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription
.
Nat Genet
.
2022
;
54
(
9
):
1417
-
1426
.
24.
Lan
X
,
Khandros
E
,
Huang
P
, et al
.
The E3 ligase adaptor molecule SPOP regulates fetal hemoglobin levels in adult erythroid cells
.
Blood Adv
.
2019
;
3
(
10
):
1586
-
1597
.
25.
Huang
P
,
Peslak
SA
,
Lan
X
, et al
.
The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression
.
Blood
.
2020
;
135
(
24
):
2121
-
2132
.
26.
Lan
X
,
Ren
R
,
Feng
R
, et al
.
ZNF410 uniquely activates the NuRD component CHD4 to silence fetal hemoglobin expression
.
Mol Cell
.
2021
;
81
(
2
):
239
-
254.e8
.
27.
Vinjamur
DS
,
Yao
Q
,
Cole
MA
, et al
.
ZNF410 represses fetal globin by singular control of CHD4
.
Nat Genet
.
2021
;
53
(
5
):
719
-
728
.
28.
Yu
L
,
Myers
G
,
Schneider
E
, et al
.
Identification of novel γ-globin inducers among all current potential erythroid druggable targets
.
Blood Adv
.
2022
;
6
(
11
):
3280
-
3285
.
29.
Orkin
SH
.
Globin gene regulation and switching: circa 1990
.
Cell
.
1990
;
63
(
4
):
665
-
672
.
30.
Papayannopoulou
T
.
Control of fetal globin expression in man: new opportunities to challenge past discoveries
.
Exp Hematol
.
2020
;
92
:
43
-
50
.
31.
Liu
N
,
Hargreaves
VV
,
Zhu
Q
, et al
.
Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch
.
Cell
.
2018
;
173
(
2
):
430
-
442.e17
.
32.
Martyn
GE
,
Wienert
B
,
Yang
L
, et al
.
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
.
Nat Genet
.
2018
;
50
(
4
):
498
-
503
.
33.
Yang
Y
,
Ren
R
,
Ly
LC
, et al
.
Structural basis for human ZBTB7A action at the fetal globin promoter
.
Cell Rep
.
2021
;
36
(
13
):
109759
.
34.
Yang
Y
,
Xu
Z
,
He
C
,
Zhang
B
,
Shi
Y
,
Li
F
.
Structural insights into the recognition of γ-globin gene promoter by BCL11A
.
Cell Res
.
2019
;
29
(
11
):
960
-
963
.
35.
Masuda
T
,
Wang
X
,
Maeda
M
, et al
.
Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin
.
Science
.
2016
;
351
(
6270
):
285
-
289
.
36.
Martyn
GE
,
Wienert
B
,
Kurita
R
,
Nakamura
Y
,
Quinlan
KGR
,
Crossley
M
.
A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site
.
Blood
.
2019
;
133
(
8
):
852
-
856
.
37.
Wienert
B
,
Martyn
GE
,
Kurita
R
,
Nakamura
Y
,
Quinlan
KGR
,
Crossley
M
.
KLF1 drives the expression of fetal hemoglobin in British HPFH
.
Blood
.
2017
;
130
(
6
):
803
-
807
.
38.
Wienert
B
,
Funnell
APW
,
Norton
LJ
, et al
.
Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin
.
Nat Commun
.
2015
;
6
(
1
):
7085
.
39.
Deng
W
,
Lee
J
,
Wang
H
, et al
.
Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor
.
Cell
.
2012
;
149
(
6
):
1233
-
1244
.
40.
Deng
W
,
Rupon
JW
,
Krivega
I
, et al
.
Reactivation of developmentally silenced globin genes by forced chromatin looping
.
Cell
.
2014
;
158
(
4
):
849
-
860
.
41.
Zhou
D
,
Liu
K
,
Sun
C-W
,
Pawlik
KM
,
Townes
TM
.
KLF1 regulates BCL11A expression and γ- to β-globin gene switching
.
Nat Genet
.
2010
;
42
(
9
):
742
-
744
.
42.
Borg
J
,
Papadopoulos
P
,
Georgitsi
M
, et al
.
Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin
.
Nat Genet
.
2010
;
42
(
9
):
801
-
805
.
43.
Nuez
B
,
Michalovich
D
,
Bygrave
A
,
Ploemacher
R
,
Grosveld
F
.
Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene
.
Nature
.
1995
;
375
(
6529
):
316
-
318
.
44.
Perkins
AC
,
Sharpe
AH
,
Orkin
SH
.
Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF
.
Nature
.
1995
;
375
(
6529
):
318
-
322
.
45.
Lee
YT
,
de Vasconcellos
JF
,
Yuan
J
, et al
.
LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo
.
Blood
.
2013
;
122
(
6
):
1034
-
1041
.
46.
de Vasconcellos
JF
,
Tumburu
L
,
Byrnes
C
, et al
.
IGF2BP1 overexpression causes fetal-like hemoglobin expression patterns in cultured human adult erythroblasts
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
28
):
E5664
-
E5672
.
47.
Basak
A
,
Munschauer
M
,
Lareau
CA
, et al
.
Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation
.
Nat Genet
.
2020
;
52
(
2
):
138
-
145
.
48.
Huang
P
,
Keller
CA
,
Giardine
B
, et al
.
Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element
.
Genes Dev
.
2017
;
31
(
16
):
1704
-
1713
.
49.
Xu
J
,
Shao
Z
,
Glass
K
, et al
.
Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis
.
Dev Cell
.
2012
;
23
(
4
):
796
-
811
.
50.
Lessard
S
,
Beaudoin
M
,
Orkin
SH
,
Bauer
DE
,
Lettre
G
.
14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts
.
Hum Mol Genet
.
2018
;
27
(
8
):
1411
-
1420
.
51.
Kurita
R
,
Funato
K
,
Abe
T
, et al
.
Establishment and characterization of immortalized erythroid progenitor cell lines derived from a common cell source
.
Exp Hematol
.
2019
;
69
:
11
-
16
.
52.
Jiang
J
,
Best
S
,
Menzel
S
, et al
.
cMYB is involved in the regulation of fetal hemoglobin production in adults
.
Blood
.
2006
;
108
(
3
):
1077
-
1083
.
53.
Huang
P
,
Peslak
SA
,
Shehu
V
, et al
.
Let-7 miRNAs repress HIC2 to regulate BCL11A transcription and hemoglobin switching
.
Blood
.
2024
;
143
(
19
):
1980
-
1991
.
54.
Chaand
M
,
Fiore
C
,
Johnston
B
, et al
.
Erythroid lineage chromatin accessibility maps facilitate identification and validation of NFIX as a fetal hemoglobin repressor
.
Commun Biol
.
2023
;
6
(
1
):
640
.
55.
Danjou
F
,
Zoledziewska
M
,
Sidore
C
, et al
.
Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels
.
Nat Genet
.
2015
;
47
(
11
):
1264
-
1271
.
56.
Li
X
,
Chen
M
,
Liu
B
, et al
.
Transcriptional silencing of fetal hemoglobin expression by NonO
.
Nucleic Acids Res
.
2021
;
49
(
17
):
9711
-
9723
.
57.
Yi
Z
,
Cohen-Barak
O
,
Hagiwara
N
, et al
.
Sox6 directly silences epsilon globin expression in definitive erythropoiesis
.
PLoS Genet
.
2006
;
2
(
2
):
e14
.
58.
Xu
J
,
Sankaran
VG
,
Ni
M
, et al
.
Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6
.
Genes Dev
.
2010
;
24
(
8
):
783
-
798
.
59.
Sripichai
O
,
Kiefer
CM
,
Bhanu
NV
, et al
.
Cytokine-mediated increases in fetal hemoglobin are associated with globin gene histone modification and transcription factor reprogramming
.
Blood
.
2009
;
114
(
11
):
2299
-
2306
.
60.
Martyn
GE
,
Quinlan
KGR
,
Crossley
M
.
The regulation of human globin promoters by CCAAT box elements and the recruitment of NF-Y
.
Biochim Biophys Acta Gene Regul Mech
.
2017
;
1860
(
5
):
525
-
536
.
61.
Fang
X
,
Han
H
,
Stamatoyannopoulos
G
,
Li
Q
.
Developmentally specific role of the CCAAT box in regulation of human γ-globin gene expression
.
J Biol Chem
.
2004
;
279
(
7
):
5444
-
5449
.
62.
Duan
Z
,
Stamatoyannopoulos
G
,
Li
Q
.
Role of NF-Y in in vivo regulation of the γ-globin gene
.
Mol Cell Biol
.
2001
;
21
(
9
):
3083
-
3095
.
63.
Zhu
X
,
Wang
Y
,
Pi
W
,
Liu
H
,
Wickrema
A
,
Tuan
D
.
NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene
.
PLoS One
.
2012
;
7
(
10
):
e47175
.
64.
Doerfler
PA
,
Feng
R
,
Li
Y
, et al
.
Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin
.
Nat Genet
.
2021
;
53
(
8
):
1177
-
1186
.
65.
Shang
S
,
Li
X
,
Azzo
A
, et al
.
MBD2a–NuRD binds to the methylated γ-globin gene promoter and uniquely forms a complex required for silencing of HbF expression
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
25
):
e2302254120
.
66.
Kiefer
CM
,
Lee
J
,
Hou
C
, et al
.
Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells
.
Blood
.
2011
;
118
(
23
):
6200
-
6208
.
67.
Werner
MS
,
Sullivan
MA
,
Shah
RN
, et al
.
Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription
.
Nat Struct Mol Biol
.
2017
;
24
(
7
):
596
-
603
.
68.
Ivaldi
MS
,
Diaz
LF
,
Chakalova
L
,
Lee
J
,
Krivega
I
,
Dean
A
.
Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus
.
Blood
.
2018
;
132
(
18
):
1963
-
1973
.
69.
Bard
H
,
Fouron
J-C
,
Gagnon
C
,
Gagnon
J
.
Hypoxemia and increased fetal hemoglobin synthesis
.
J Pediatr
.
1994
;
124
(
6
):
941
-
943
.
70.
DeSimone
J
,
Biel
SI
,
Heller
P
.
Stimulation of fetal hemoglobin synthesis in baboons by hemolysis and hypoxia
.
Proc Natl Acad Sci U S A
.
1978
;
75
(
6
):
2937
-
2940
.
71.
Haase
VH
.
Hypoxia-inducible factor–prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease
.
Kidney Int Suppl
.
2021
;
11
(
1
):
8
-
25
.
72.
Armstrong
JA
,
Bieker
JJ
,
Emerson
BM
.
A SWI/SNF–related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro
.
Cell
.
1998
;
95
(
1
):
93
-
104
.
73.
Kim
S-I
,
Bultman
SJ
,
Kiefer
CM
,
Dean
A
,
Bresnick
EH
.
BRG1 requirement for long-range interaction of a locus control region with a downstream promoter
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
7
):
2259
-
2264
.
74.
Guo
X
,
Zhao
Y
,
Kim
J
,
Dean
A
.
Hemogen/BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis
.
Blood
.
2022
;
139
(
24
):
3532
-
3545
.
75.
Billakanti
S
,
Shehu
V
,
Farrell
KM
, et al
.
Selective globin gene regulation by the non-canonical Baf chromatin remodeling complex [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
553
.
76.
Rupon
JW
,
Wang
SZ
,
Gaensler
K
,
Lloyd
J
,
Ginder
GD
.
Methyl binding domain protein 2 mediates γ-globin gene silencing in adult human βYAC transgenic mice
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
17
):
6617
-
6622
.
77.
Amaya
M
,
Desai
M
,
Gnanapragasam
MN
, et al
.
Mi2β-mediated silencing of the fetal γ-globin gene in adult erythroid cells
.
Blood
.
2013
;
121
(
17
):
3493
-
3501
.
78.
Gnanapragasam
MN
,
Scarsdale
JN
,
Amaya
ML
, et al
.
p66α–MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2–NuRD complex
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
18
):
7487
-
7492
.
79.
Reid
XJ
,
Low
JKK
,
Mackay
JP
.
A NuRD for all seasons
.
Trends Biochem Sci
.
2023
;
48
(
1
):
11
-
25
.
80.
Xu
J
,
Bauer
DE
,
Kerenyi
MA
, et al
.
Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
16
):
6518
-
6523
.
81.
Cui
S
,
Kolodziej
KE
,
Obara
N
, et al
.
Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells
.
Mol Cell Biol
.
2011
;
31
(
16
):
3298
-
3311
.
82.
Gong
Y
,
Zhang
X
,
Zhang
Q
, et al
.
A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia
.
Blood
.
2021
;
137
(
12
):
1652
-
1657
.
83.
Leighton
GO
,
Shang
S
,
Hageman
S
,
Ginder
GD
,
Williams
DC
.
Analysis of the complex between MBD2 and the histone deacetylase core of NuRD reveals key interactions critical for gene silencing
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
33
):
e2307287120
.
84.
Ley
TJ
,
DeSimone
J
,
Anagnou
NP
, et al
.
5-azacytidine selectively increases γ-globin synthesis in a patient with β+ thalassemia
.
N Engl J Med
.
1982
;
307
(
24
):
1469
-
1475
.
85.
Miccio
A
,
Wang
Y
,
Hong
W
, et al
.
NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development
.
EMBO J
.
2010
;
29
(
2
):
442
-
456
.
86.
Liu
B
,
Brendel
C
,
Vinjamur
DS
, et al
.
Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies
.
Mol Ther
.
2022
;
30
(
8
):
2693
-
2708
.
87.
Matson
D
,
Xie
K
,
Roth
M
, et al
.
Ftx-6058 induces fetal hemoglobin production and ameliorates disease pathology in sickle cell mice [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
2018
.
88.
Qin
K
,
Lan
X
,
Huang
P
, et al
.
Molecular basis of polycomb group protein–mediated fetal hemoglobin repression
.
Blood
.
2023
;
141
(
22
):
2756
-
2770
.
89.
Krivega
I
,
Byrnes
C
,
de Vasconcellos
JF
, et al
.
Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping
.
Blood
.
2015
;
126
(
5
):
665
-
672
.
90.
Renneville
A
,
Van Galen
P
,
Canver
MC
, et al
.
EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression
.
Blood
.
2015
;
126
(
16
):
1930
-
1939
.
91.
Ting
PY
,
Borikar
S
,
Kerrigan
JR
, et al
.
Targeted degradation of the Wiz transcription factor for gamma globin de-repression [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
2
.
92.
Takase
S
,
Hiroyama
T
,
Shirai
F
, et al
.
A specific G9a inhibitor unveils BGLT3 lncRNA as a universal mediator of chemically induced fetal globin gene expression
.
Nat Commun
.
2023
;
14
(
1
):
23
.
93.
Lv
X
,
Murphy
K
,
Murphy
Z
, et al
.
HEXIM1 is an essential transcription regulator during human erythropoiesis
.
Blood
.
2023
;
142
(
25
):
2198
-
2215
.
94.
Wakabayashi
A
,
Kihiu
M
,
Sharma
M
, et al
.
Identification and characterization of RBM12 as a novel regulator of fetal hemoglobin expression
.
Blood Adv
.
2022
;
6
(
23
):
5956
-
5968
.
95.
Elagooz
R
,
Dhara
AR
,
Gott
RM
, et al
.
PUM1 mediates the posttranscriptional regulation of human fetal hemoglobin
.
Blood Adv
.
2022
;
6
(
23
):
6016
-
6022
.
96.
Zhang
Y
,
Paikari
A
,
Sumazin
P
, et al
.
Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells
.
Blood
.
2018
;
132
(
3
):
321
-
333
.
97.
Hara
Y
,
Lemgart
VT
,
Halland
N
, et al
.
SGK1 inhibition induces fetal hemoglobin expression and delays polymerization in sickle erythroid cells
.
Blood Adv
.
2023
;
7
(
11
):
2317
-
2323
.
98.
Palani
CD
,
Zhu
X
,
Alagar
M
,
Attucks
OC
,
Pace
BS
.
Bach1 inhibitor HPP-D mediates γ-globin gene activation in sickle erythroid progenitors
.
Blood Cells Mol Dis
.
2024
;
104
:
102792
.
99.
Traxler
EA
,
Komar
C
,
Saari
M
, et al
.
Genome-scale CRISPR-Cas12a screen identifies novel fetal hemoglobin regulators [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
1101
.
100.
Balbin-Cuesta
G
,
Myers
G
,
Lin
Z
, et al
.
Identifying novel regulators of γ-globin expression using a genome-scale CRISPR activation scree [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
1100
.
101.
Békés
M
,
Langley
DR
,
Crews
CM
.
PROTAC targeted protein degraders: the past is prologue
.
Nat Rev Drug Discov
.
2022
;
21
(
3
):
181
-
200
.
You do not currently have access to this content.
Sign in via your Institution