• Cisplatin induces platelet pyroptosis via the activation of the caspase-3–GSDME axis.

  • Loss of GSDME protects mice from cisplatin-induced platelet hyperactivation.

Abstract

Thrombotic complications due to platelet hyperreactivity are a major cause of death in patients undergoing chemotherapy. However, the underlying mechanisms are not fully understood. Herein, using human platelets and platelets from mice lacking gasdermin E (GSDME), we show that GSDME is functionally expressed in anucleate platelets, and that GSDME-mediated pyroptosis, a newly identified form of cell death in mammalian nucleated cells, contributes to platelet hyperactivity in cisplatin-based chemotherapy. Cisplatin or etoposide activates caspase-3 to cleave GSDME, thereby releasing the N-terminal fragment of GSDME (GSDME-N) toward the platelet plasma membrane, subsequently forming membrane pores and facilitating platelet granule release. This eventually promotes platelet hyperactivity and thrombotic potential. We identified flotillin-2, a scaffold protein, as a GSDME-N interactor that recruits GSDME-N to the platelet membrane. Loss of GSDME protects mice from cisplatin-induced platelet hyperactivity. Our results provide evidence that targeting GSDME-mediated pyroptosis could reduce thrombotic potential in chemotherapy.

1.
Herrmann
J
,
Yang
EH
,
Iliescu
CA
, et al
.
Vascular toxicities of cancer therapies: the old and the new--an evolving avenue
.
Circulation
.
2016
;
133
(
13
):
1272
-
1289
.
2.
Kedzierska
M
,
Czernek
U
,
Szydłowska-Pazera
K
, et al
.
The changes of blood platelet activation in breast cancer patients before surgery, after surgery, and in various phases of the chemotherapy
.
Platelets
.
2013
;
24
(
6
):
462
-
468
.
3.
Hao
Z
,
Lv
H
,
Tan
R
,
Yang
X
,
Liu
Y
,
Xia
YL
.
A three-dimensional microfluidic device for monitoring cancer and chemotherapy-associated platelet activation
.
ACS Omega
.
2021
;
6
(
4
):
3164
-
3172
.
4.
Prandoni
P
,
Falanga
A
,
Piccioli
A
.
Cancer and venous thromboembolism
.
Lancet Oncol
.
2005
;
6
(
6
):
401
-
410
.
5.
Sousou
T
,
Khorana
AA
.
New insights into cancer-associated thrombosis
.
Arterioscler Thromb Vasc Biol
.
2009
;
29
(
3
):
316
-
320
.
6.
Heit
JA
,
Silverstein
MD
,
Mohr
DN
,
Petterson
TM
,
O'Fallon
WM
,
Melton
LJ
.
Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study
.
Arch Intern Med
.
2000
;
160
(
6
):
809
-
815
.
7.
Moore
RA
,
Adel
N
,
Riedel
E
, et al
.
High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: a large retrospective analysis
.
J Clin Oncol
.
2011
;
29
(
25
):
3466
-
3473
.
8.
Abdel-Razeq
H
,
Mansour
A
,
Abdulelah
H
, et al
.
Thromboembolic events in cancer patients on active treatment with cisplatin-based chemotherapy: another look
.
Thromb J
.
2018
;
16
(
2
):
1
-
7
.
9.
Lee
YG
,
Lee
E
,
Kim
I
, et al
.
Cisplatin-based chemotherapy is a strong risk factor for thromboembolic events in small-cell lung cancer
.
Cancer Res Treat
.
2015
;
47
(
4
):
670
-
675
.
10.
Haugnes
HS
,
Negaard
HF
,
Jensvoll
H
,
Wilsgaard
T
,
Tandstad
T
,
Solberg
A
.
Thromboembolic events during treatment with cisplatin-based chemotherapy in metastatic testicular germ-cell cancer 2000-2014: a population-based cohort study
.
Eur Urol Open Sci
.
2021
;
32
:
19
-
27
.
11.
Solari
L
,
Kronig
M
,
Ihorst
G
, et al
.
High rates of thromboembolic events in patients with germ cell cancer undergoing cisplatin-based polychemotherapy
.
Urol Int
.
2016
;
96
(
4
):
399
-
405
.
12.
Hua
VM
,
Abeynaike
L
,
Glaros
E
, et al
.
Necrotic platelets provide a procoagulant surface during thrombosis
.
Blood
.
2015
;
126
(
26
):
2852
-
2862
.
13.
Chen
X
,
Zhang
Y
,
Wang
Y
, et al
.
PDK1 regulates platelet activation and arterial thrombosis
.
Blood
.
2013
;
121
(
18
):
3718
-
3726
.
14.
Leytin
V
.
Apoptosis in the anucleate platelet
.
Blood Rev
.
2012
;
26
(
2
):
51
-
63
.
15.
Togna
GI
,
Togna
AR
,
Franconi
M
,
Caprino
L
.
Cisplatin triggers platelet activation
.
Thromb Res
.
2000
;
99
(
5
):
503
-
509
.
16.
Leytin
V
,
Allen
DJ
,
Mutlu
A
, et al
.
Platelet activation and apoptosis are different phenomena: evidence from the sequential dynamics and the magnitude of responses during platelet storage
.
Br J Haematol
.
2008
;
142
(
3
):
494
-
497
.
17.
Wang
Y
,
Gao
W
,
Shi
X
, et al
.
Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin
.
Nature
.
2017
;
547
(
7661
):
99
-
103
.
18.
Wang
Y
,
Yin
B
,
Li
D
,
Wang
G
,
Han
X
,
Sun
X
.
GSDME mediates caspase-3-dependent pyroptosis in gastric cancer
.
Biochem Biophys Res Commun
.
2018
;
495
(
1
):
1418
-
1425
.
19.
Yu
P
,
Zhang
X
,
Liu
N
,
Tang
L
,
Peng
C
,
Chen
X
.
Pyroptosis: mechanisms and diseases
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
128
.
20.
Shi
J
,
Gao
W
,
Shao
F
.
Pyroptosis: gasdermin-mediated programmed necrotic cell Death
.
Trends Biochem Sci
.
2017
;
42
(
4
):
245
-
254
.
21.
Feng
S
,
Fox
D
,
Man
SM
.
Mechanisms of gasdermin family members in inflammasome signaling and cell death
.
J Mol Biol
.
2018
;
430
(
18 pt B
):
3068
-
3080
.
22.
Jiang
M
,
Qi
L
,
Li
L
, et al
.
The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer
.
Cell Death Discov
.
2020
;
6
:
112
-
122
.
23.
Zhang
Y
,
Chen
X
,
Gueydan
C
, et al
.
Plasma membrane changes during programmed cell deaths
.
Cell Res
.
2018
;
28
(
1
):
9
-
21
.
24.
Taabazuing
CY
,
Okondo
MC
,
Bachovchin
Daniel A
.
Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages
.
Cell Chem Biol
.
2017
;
24
(
4
):
507
-
514.e4
.
25.
Su
M
,
Chen
C
,
Li
S
, et al
.
Gasdermin D-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis
.
Nat Cardiovasc Res
.
2022
;
1
(
8
):
732
-
747
.
26.
Laer
LV
,
Huizing
EH
,
Verstreken
M
, et al
.
Nonsyndromic hearing impairment is associated with a mutation in DFNA5
.
Nat Genet
.
1998
;
20
(
2
):
194
-
197
.
27.
Bender
M
,
Palankar
R
.
Platelet shape changes during thrombus formation: role of actin-based protrusions
.
Hämostaseologie
.
2021
;
41
(
1
):
14
-
21
.
28.
Ai
YL
,
Wang
WJ
,
Liu
FJ
, et al
.
Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P
.
Cell Res
.
2023
;
33
(
12
):
904
-
922
.
29.
Zhang
W
,
Zhao
L
,
Liu
J
, et al
.
Cisplatin induces platelet apoptosis through the ERK signaling pathway
.
Thromb Res
.
2012
;
130
(
1
):
81
-
91
.
30.
van der Meijden
PEJ
,
Heemskerk
JWM
.
Platelet biology and functions: new concepts and clinical perspectives
.
Nat Rev Cardiol
.
2019
;
16
(
3
):
166
-
179
.
31.
Heinjen
H
,
van der Sluijs
P.
.
Platelet secretory behaviour: as the granules …or not?
.
J Thromb Haemost
.
2015
;
13
(
12
):
2141
-
2151
.
32.
Langhorst
MF
,
Reuter
A
,
Jaeger
FA
, et al
.
Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2
.
Eur J Cell Biol
.
2008
;
87
(
4
):
211
-
226
.
33.
Salzer
U
,
Prohaska
R
.
Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts
.
Blood
.
2001
;
97
(
4
):
1141
-
1143
.
34.
Cronin-Fenton
DP
,
Sondergaard
F
,
Pedersen
LA
, et al
.
Hospitalisation for venous thromboembolism in cancer patients and the general population: a population-based cohort study in Denmark, 1997-2006
.
Br J Cancer
.
2010
;
103
(
7
):
947
-
953
.
35.
Khorana
AA
,
Dalal
M
,
Lin
J
, et al
.
Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States
.
Cancer
.
2013
;
119
(
3
):
648
-
655
.
36.
Zamorano
JL
,
Lancellotti
P
,
Rodriguez Munoz
D
, et al
.
2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)
.
Eur Heart J
.
2016
;
37
(
36
):
2768
-
2801
.
37.
Li
Y
,
Xin
G
,
Li
S
, et al
.
PD-L1 regulates platelet activation and thrombosis via caspase-3/GSDME pathway
.
Front Pharmacol
.
2022
;
13
:
921414
.
38.
Kim
MS
,
Lebron
C
,
Nagpal
JK
, et al
.
Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer
.
Biochem Biophys Res Commun
.
2008
;
370
(
1
):
38
-
43
.
39.
Lu
H
,
Zhang
S
,
Wu
J
, et al
.
Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death
.
Clin Cancer Res
.
2018
;
24
(
23
):
6066
-
6077
.
40.
Fink
SL
,
Cookson
BT
.
Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells
.
Infect Immun
.
2005
;
73
(
4
):
1907
-
1916
.
41.
Jurk
K
,
Kehrel
BE
.
Platelets: physiology and biochemistry
.
Semin Thromb Hemost
.
2005
;
31
(
04
):
381
-
392
.
42.
Suzuki-Inoue
K
.
[Activation and inhibitory mechanisms of blood platelets]
.
Nihon Rinsho
.
2014
;
72
(
7
):
1212
-
1217
.
43.
Coppinger
JA
,
Cagney
G
,
Toomey
S
, et al
.
Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions
.
Blood
.
2004
;
103
(
6
):
2096
-
2104
.
44.
Kahr
WHA
.
Granules and thrombus formation
.
Blood
.
2009
;
114
(
5
):
932
-
933
.
45.
Sehgal
S
,
Storrie
B
.
Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release
.
J Thromb Haemost
.
2007
;
5
(
10
):
2009
-
2016
.
46.
Polasek
J
.
Estrogens, platelets and lysosomes
.
J Thromb Haemost
.
2003
;
1
(
4
):
856
-
857
.
47.
Xu
X
,
Sun
B
.
Platelet granule secretion mechanisms: are they modified in sepsis?
.
Thromb Res
.
2015
;
136
(
5
):
845
-
850
.
48.
Tavernarakis
N
,
Driscoll
M
,
Kyrpides
NC
.
The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins
.
Trends Biochem Sci
.
1999
;
24
(
11
):
425
-
427
.
49.
Hiller
NL
,
Akompong
T
,
Morrow
JS
,
Holder
AA
,
Haldar
K
.
Identification of a stomatin orthologue in vacuoles induced in human erythrocytes by malaria parasites. A role for microbial raft proteins in apicomplexan vacuole biogenesis
.
J Biol Chem
.
2003
;
278
(
48
):
48413
-
48421
.
50.
Murphy
SC
,
Samuel
BU
,
Harrison
T
, et al
.
Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection
.
Blood
.
2004
;
103
(
5
):
1920
-
1928
.
51.
Nagao
E
,
Seydel
KB
,
Dvorak
JA
.
Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection
.
Exp Parasitol
.
2002
;
102
(
1
):
57
-
59
.
52.
Sugawara
Y
,
Nishii
H
,
Takahashi
T
, et al
.
The lipid raft proteins flotillins/reggies interact with Galphaq and are involved in Gq-mediated p38 mitogen-activated protein kinase activation through tyrosine kinase
.
Cell Signal
.
2007
;
19
(
6
):
1301
-
1308
.
53.
Browman
DT
,
Hoegg
MB
,
Robbins
SM
.
The SPFH domain-containing proteins: more than lipid raft markers
.
Trends Cell Biol
.
2007
;
17
(
8
):
394
-
402
.
54.
Bodin
S
,
Tronchere
H
,
Payrastre
B
.
Lipid rafts are critical membrane domains in blood platelet activation processes
.
Biochim Biophys Acta
.
2003
;
1610
(
2
):
247
-
257
.
55.
Pradhan
S
,
Vijayan
KV
.
Lipid rafts contribute to agonist-induced serine/threonine phosphatase activation and platelet aggregation
.
J Thromb Haemost
.
2013
;
11
(
8
):
1612
-
1615
.
You do not currently have access to this content.
Sign in via your Institution