• NG2 is an epigenetically regulated direct target gene of the leukemic MLL-AF4 fusion protein.

  • NG2 negatively regulates the expression of the glucocorticoid receptor NR3C1, conferring glucocorticoid resistance to MLLr B-ALL cells.

Abstract

B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ∼85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis in MLLr B-ALL. Despite its contribution to MLLr B-ALL pathogenesis, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here, we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-ALF transcription elongation factor 4 (AF4) fusion protein. NG2 negatively regulates the expression of the GC receptor nuclear receptor subfamily 3 group C member 1 (NR3C1) and confers GC resistance to MLLr B-ALL cells. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via activating protein-1 (AP-1)–mediated transrepression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1–mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.

1.
Downing
JR
,
Wilson
RK
,
Zhang
J
, et al
.
The pediatric cancer genome project
.
Nat Genet
.
2012
;
44
(
6
):
619
-
622
.
2.
Pui
CH
,
Yang
JJ
,
Hunger
SP
, et al
.
Childhood acute lymphoblastic leukemia: progress through collaboration
.
J Clin Oncol
.
2015
;
33
(
27
):
2938
-
2948
.
3.
Pui
CH
,
Mullighan
CG
,
Evans
WE
,
Relling
MV
.
Pediatric acute lymphoblastic leukemia: where are we going and how do we get there?
.
Blood
.
2012
;
120
(
6
):
1165
-
1174
.
4.
Meyer
C
,
Burmeister
T
,
Groger
D
, et al
.
The MLL recombinome of acute leukemias in 2017
.
Leukemia
.
2018
;
32
(
2
):
273
-
284
.
5.
Biondi
A
,
Cimino
G
,
Pieters
R
,
Pui
CH
.
Biological and therapeutic aspects of infant leukemia
.
Blood
.
2000
;
96
(
1
):
24
-
33
.
6.
Sanjuan-Pla
A
,
Bueno
C
,
Prieto
C
, et al
.
Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia
.
Blood
.
2015
;
126
(
25
):
2676
-
2685
.
7.
Pieters
R
,
den Boer
ML
,
Durian
M
, et al
.
Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia--implications for treatment of infants
.
Leukemia
.
1998
;
12
(
9
):
1344
-
1348
.
8.
Dordelmann
M
,
Reiter
A
,
Borkhardt
A
, et al
.
Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia
.
Blood
.
1999
;
94
(
4
):
1209
-
1217
.
9.
Olivas-Aguirre
M
,
Torres-Lopez
L
,
Pottosin
I
,
Dobrovinskaya
O
.
Overcoming glucocorticoid resistance in acute lymphoblastic leukemia: repurposed drugs can improve the protocol
.
Front Oncol
.
2021
;
11
:
617937
.
10.
Inaba
H
,
Pui
CH
.
Glucocorticoid use in acute lymphoblastic leukaemia
.
Lancet Oncol
.
2010
;
11
(
11
):
1096
-
1106
.
11.
Reddy
TE
,
Pauli
F
,
Sprouse
RO
, et al
.
Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation
.
Genome Res
.
2009
;
19
(
12
):
2163
-
2171
.
12.
Rainer
J
,
Lelong
J
,
Bindreither
D
, et al
.
Research resource: transcriptional response to glucocorticoids in childhood acute lymphoblastic leukemia
.
Mol Endocrinol
.
2012
;
26
(
1
):
178
-
193
.
13.
Schmidt
S
,
Rainer
J
,
Riml
S
, et al
.
Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia
.
Blood
.
2006
;
107
(
5
):
2061
-
2069
.
14.
Petta
I
,
Dejager
L
,
Ballegeer
M
, et al
.
The interactome of the glucocorticoid receptor and its influence on the actions of glucocorticoids in combatting inflammatory and infectious diseases
.
Microbiol Mol Biol Rev
.
2016
;
80
(
2
):
495
-
522
.
15.
Evangelisti
C
,
Cappellini
A
,
Oliveira
M
, et al
.
Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia
.
J Cell Physiol
.
2018
;
233
(
3
):
1796
-
1811
.
16.
Spijkers-Hagelstein
JA
,
Pinhancos
SS
,
Schneider
P
,
Pieters
R
,
Stam
RW
.
Chemical genomic screening identifies LY294002 as a modulator of glucocorticoid resistance in MLL-rearranged infant ALL
.
Leukemia
.
2014
;
28
(
4
):
761
-
769
.
17.
Gebru
MT
,
Atkinson
JM
,
Young
MM
, et al
.
Glucocorticoids enhance the antileukemic activity of FLT3 inhibitors in FLT3-mutant acute myeloid leukemia
.
Blood
.
2020
;
136
(
9
):
1067
-
1079
.
18.
Small
D
.
Targeting FLT3 for the treatment of leukemia
.
Semin Hematol
.
2008
;
45
(
3 Suppl 2
):
S17
-
S21
.
19.
Bueno
C
,
Montes
R
,
Martin
L
, et al
.
NG2 antigen is expressed in CD34+ HPCs and plasmacytoid dendritic cell precursors: is NG2 expression in leukemia dependent on the target cell where leukemogenesis is triggered?
.
Leukemia
.
2008
;
22
(
8
):
1475
-
1478
.
20.
Menendez
P
,
Bueno
C
.
Expression of NG2 antigen in MLL-rearranged acute leukemias: how complex does it get?
.
Leuk Res
.
2011
;
35
(
8
):
989
-
990
.
21.
Prieto
C
,
Lopez-Millan
B
,
Roca-Ho
H
, et al
.
NG2 antigen is involved in leukemia invasiveness and central nervous system infiltration in MLL-rearranged infant B-ALL
.
Leukemia
.
2018
;
32
(
3
):
633
-
644
.
22.
Smith
FO
,
Rauch
C
,
Williams
DE
, et al
.
The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor-prognosis patients with abnormalities of chromosome band 11q23
.
Blood
.
1996
;
87
(
3
):
1123
-
1133
.
23.
Behm
FG
,
Smith
FO
,
Raimondi
SC
,
Pui
CH
,
Bernstein
ID
.
Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements
.
Blood
.
1996
;
87
(
3
):
1134
-
1139
.
24.
Wuchter
C
,
Harbott
J
,
Schoch
C
, et al
.
Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1
.
Leukemia
.
2000
;
14
(
7
):
1232
-
1238
.
25.
Lopez-Millan
B
,
Sanchez-Martinez
D
,
Roca-Ho
H
, et al
.
NG2 antigen is a therapeutic target for MLL-rearranged B-cell acute lymphoblastic leukemia
.
Leukemia
.
2019
;
33
(
7
):
1557
-
1569
.
26.
Price
MA
,
Colvin Wanshura
LE
,
Yang
J
, et al
.
CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma
.
Pigment Cell Melanoma Res
.
2011
;
24
(
6
):
1148
-
1157
.
27.
Chillon
MC
,
Gomez-Casares
MT
,
Lopez-Jorge
CE
, et al
.
Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4+ and MLL-germline acute lymphoblastic leukemia
.
Leukemia
.
2012
;
26
(
11
):
2360
-
2366
.
28.
Tejedor
JR
,
Bueno
C
,
Vinyoles
M
, et al
.
Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia
.
J Clin Invest
.
2021
;
131
(
13
):
e138833
.
29.
Agraz-Doblas
A
,
Bueno
C
,
Bashford-Rogers
R
, et al
.
Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis
.
Haematologica
.
2019
;
104
(
6
):
1176
-
1188
.
30.
Prieto
C
,
Stam
RW
,
Agraz-Doblas
A
, et al
.
Activated KRAS cooperates with MLL-AF4 to promote extramedullary engraftment and migration of cord blood CD34+ HSPC but is insufficient to initiate leukemia
.
Cancer Res
.
2016
;
76
(
8
):
2478
-
2489
.
31.
Castano
J
,
Herrero
AB
,
Bursen
A
, et al
.
Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair
.
Oncotarget
.
2016
;
7
(
21
):
30440
-
30452
.
32.
Zanetti
SR
,
Velasco-Hernandez
T
,
Gutierrez-Aguera
F
, et al
.
A novel and efficient tandem CD19- and CD22-directed CAR for B cell ALL
.
Mol Ther
.
2022
;
30
(
2
):
550
-
563
.
33.
Bueno
C
,
Torres-Ruiz
R
,
Velasco-Hernandez
T
, et al
.
A human genome editing-based MLL::AF4 ALL model recapitulates key cellular and molecular leukemogenic features
.
Blood
.
2023
;
142
(
20
):
1752
-
1756
.
34.
Lopez-Millan
B
,
Costales
P
,
Gutierrez-Aguera
F
, et al
.
The multi-kinase inhibitor EC-70124 is a promising candidate for the treatment of FLT3-ITD-positive acute myeloid leukemia
.
Cancers
.
2022
;
14
(
6
):
1593
.
35.
Lopez-Millan
B
,
Diaz de la Guardia
R
,
Roca-Ho
H
, et al
.
IMiDs mobilize acute myeloid leukemia blasts to peripheral blood through downregulation of CXCR4 but fail to potentiate AraC/idarubicin activity in preclinical models of non del5q/5q- AML
.
Oncoimmunology
.
2018
;
7
(
9
):
e1477460
.
36.
Prieto
C
,
Marschalek
R
,
Kuhn
A
,
Bursen
A
,
Bueno
C
,
Menendez
P
.
The AF4-MLL fusion transiently augments multilineage hematopoietic engraftment but is not sufficient to initiate leukemia in cord blood CD34(+) cells
.
Oncotarget
.
2017
;
8
(
47
):
81936
-
81941
.
37.
Romero-Moya
D
,
Bueno
C
,
Montes
R
, et al
.
Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function
.
Haematologica
.
2013
;
98
(
7
):
1022
-
1029
.
38.
Pieters
R
,
Loonen
AH
,
Huismans
DR
, et al
.
In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions
.
Blood
.
1990
;
76
(
11
):
2327
-
2336
.
39.
Candelli
T
,
Schneider
P
,
Garrido Castro
P
, et al
.
Identification and characterization of relapse-initiating cells in MLL-rearranged infant ALL by single-cell transcriptomics
.
Leukemia
.
2022
;
36
(
1
):
58
-
67
.
40.
O'Byrne
S
,
Elliott
N
,
Rice
S
, et al
.
Discovery of a CD10-negative B-progenitor in human fetal life identifies unique ontogeny-related developmental programs
.
Blood
.
2019
;
134
(
13
):
1059
-
1071
.
41.
Popescu
DM
,
Botting
RA
,
Stephenson
E
, et al
.
Decoding human fetal liver haematopoiesis
.
Nature
.
2019
;
574
(
7778
):
365
-
371
.
42.
Godfrey
L
,
Crump
NT
,
O'Byrne
S
, et al
.
H3K79me2/3 controls enhancer-promoter interactions and activation of the pan-cancer stem cell marker PROM1/CD133 in MLL-AF4 leukemia cells
.
Leukemia
.
2021
;
35
(
1
):
90
-
106
.
43.
Crump
NT
,
Smith
AL
,
Godfrey
L
, et al
.
MLL-AF4 cooperates with PAF1 and FACT to drive high-density enhancer interactions in leukemia
.
Nat Commun
.
2023
;
14
(
1
):
5208
.
44.
Swaminathan
S
,
Huang
C
,
Geng
H
, et al
.
BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint
.
Nat Med
.
2013
;
19
(
8
):
1014
-
1022
.
45.
Benito
JM
,
Godfrey
L
,
Kojima
K
, et al
.
MLL-rearranged acute lymphoblastic leukemias activate BCL-2 through H3K79 methylation and are sensitive to the BCL-2-specific antagonist ABT-199
.
Cell Rep
.
2015
;
13
(
12
):
2715
-
2727
.
46.
Kerry
J
,
Godfrey
L
,
Repapi
E
, et al
.
MLL-AF4 spreading identifies binding sites that are distinct from super-enhancers and that govern sensitivity to DOT1L inhibition in leukemia
.
Cell Rep
.
2017
;
18
(
2
):
482
-
495
.
47.
Pan
F
,
Sarno
J
,
Jeong
J
, et al
.
Genome editing-induced t(4;11) chromosomal translocations model B cell precursor acute lymphoblastic leukemias with KMT2A-AFF1 fusion
.
J Clin Invest
.
2024
;
134
(
1
):
e171030
.
48.
Wang
P
,
Lin
C
,
Smith
ER
, et al
.
Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II
.
Mol Cell Biol
.
2009
;
29
(
22
):
6074
-
6085
.
49.
Pieters
R
,
Schrappe
M
,
De Lorenzo
P
, et al
.
A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial
.
Lancet
.
2007
;
370
(
9583
):
240
-
250
.
50.
Autry
RJ
,
Paugh
SW
,
Carter
R
, et al
.
Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia
.
Nat Cancer
.
2020
;
1
(
3
):
329
-
344
.
51.
Song
IH
,
Buttgereit
F
.
Non-genomic glucocorticoid effects to provide the basis for new drug developments
.
Mol Cell Endocrinol
.
2006
;
246
(
1-2
):
142
-
146
.
52.
Xiao
H
,
Ding
Y
,
Gao
Y
, et al
.
Haploinsufficiency of NR3C1 drives glucocorticoid resistance in adult acute lymphoblastic leukemia cells by down-regulating the mitochondrial apoptosis axis, and is sensitive to Bcl-2 blockage
.
Cancer Cell Int
.
2019
;
19
:
218
.
53.
Stam
RW
,
den Boer
ML
,
Schneider
P
, et al
.
Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia
.
Blood
.
2005
;
106
(
7
):
2484
-
2490
.
54.
Chougule
RA
,
Shah
K
,
Moharram
SA
,
Vallon-Christersson
J
,
Kazi
JU
.
Glucocorticoid-resistant B cell acute lymphoblastic leukemia displays receptor tyrosine kinase activation
.
NPJ Genom Med
.
2019
;
4
:
7
.
55.
Piovan
E
,
Yu
J
,
Tosello
V
, et al
.
Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia
.
Cancer Cell
.
2013
;
24
(
6
):
766
-
776
.
56.
Spijkers-Hagelstein
JA
,
Schneider
P
,
Hulleman
E
, et al
.
Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia
.
Leukemia
.
2012
;
26
(
6
):
1255
-
1265
.
57.
Spijkers-Hagelstein
JA
,
Mimoso Pinhancos
S
,
Schneider
P
,
Pieters
R
,
Stam
RW
.
Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia
.
Leukemia
.
2013
;
27
(
5
):
1063
-
1071
.
58.
Garcia-Garcia
J
,
Valls-Comamala
V
,
Guney
E
, et al
.
iFrag: a protein-protein interface prediction server based on sequence fragments
.
J Mol Biol
.
2017
;
429
(
3
):
382
-
389
.
59.
Su
YC
,
Mattsson
E
,
Singh
B
,
Jalalvand
F
,
Murphy
TF
,
Riesbeck
K
.
The laminin interactome: a multifactorial laminin-binding strategy by nontypeable Haemophilus influenzae for effective adherence and colonization
.
J Infect Dis
.
2019
;
220
(
6
):
1049
-
1060
.
60.
Greaves
MF
.
Infant leukaemia biology, aetiology and treatment
.
Leukemia
.
1996
;
10
(
2
):
372
-
377
.
61.
Pieters
R
.
Infant acute lymphoblastic leukemia: lessons learned and future directions
.
Curr Hematol Malig Rep
.
2009
;
4
(
3
):
167
-
174
.
62.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
63.
Den Boer
ML
,
Harms
DO
,
Pieters
R
, et al
.
Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia
.
J Clin Oncol
.
2003
;
21
(
17
):
3262
-
3268
.
64.
van der Sluis
IM
,
de Lorenzo
P
,
Kotecha
RS
, et al
.
Blinatumomab added to chemotherapy in infant lymphoblastic leukemia
.
N Engl J Med
.
2023
;
388
(
17
):
1572
-
1581
.
65.
Stam
RW
,
Den Boer
ML
,
Schneider
P
, et al
.
Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia
.
Blood
.
2010
;
115
(
5
):
1018
-
1025
.
66.
Kino
T
,
Su
YA
,
Chrousos
GP
.
Human glucocorticoid receptor isoform beta: recent understanding of its potential implications in physiology and pathophysiology
.
Cell Mol Life Sci
.
2009
;
66
(
21
):
3435
-
3448
.
67.
El Chaer
F
,
Keng
M
,
Ballen
KK
.
MLL-rearranged acute lymphoblastic leukemia
.
Curr Hematol Malig Rep
.
2020
;
15
(
2
):
83
-
89
.
68.
Brown
PA
,
Kairalla
JA
,
Hilden
JM
, et al
.
FLT3 inhibitor lestaurtinib plus chemotherapy for newly diagnosed KMT2A-rearranged infant acute lymphoblastic leukemia: Children's Oncology Group trial AALL0631
.
Leukemia
.
2021
;
35
(
5
):
1279
-
1290
.
You do not currently have access to this content.
Sign in via your Institution