• We identified 7 new genetic regions for factor VIII levels, 1 for von Willebrand factor levels, and 3 in a combined analysis.

  • Silencing B3GNT2 and CD36 reduced factor VIII release in vitro. Silencing B3GNT2, CD36, and PDIA3 reduced von Willebrand factor release.

Abstract

Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10−9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.

1.
Swami
A
,
Kaur
V
.
A concise review and update for the practicing physician
.
Clin Appl Thromb Hemost
.
2017
;
23
(
8
):
900
-
910
.
2.
Chavin
SI
.
Factor VIII: structure and function in blood clotting
.
Am J Hematol
.
1984
;
16
(
3
):
297
-
306
.
3.
Terraube
V
,
O'Donnell
JS
,
Jenkins
PV
.
Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance
.
Haemophilia
.
2010
;
16
(
1
):
3
-
13
.
4.
Lippi
G
,
Franchini
M
,
Salvagno
GL
,
Montagnana
M
,
Poli
G
,
Guidi
GC
.
Correlation between von Willebrand factor antigen, von Willebrand factor ristocetin cofactor activity and factor VIII activity in plasma
.
J Thromb Thrombolysis
.
2008
;
26
(
2
):
150
-
153
.
5.
Temprano-Sagrera
G
,
Sitlani
CM
,
Bone
WP
, et al
.
Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations
.
J Thromb Haemost
.
2022
;
20
(
6
):
1331
-
1349
.
6.
de Lange
M
,
Snieder
H
,
Ariens
RA
,
Spector
TD
,
Grant
PJ
.
The genetics of haemostasis: a twin study
.
Lancet
.
2001
;
357
(
9250
):
101
-
105
.
7.
Swystun
LL
,
Lillicrap
D
.
Genetic regulation of plasma von Willebrand factor levels in health and disease
.
J Thromb Haemost
.
2018
;
16
(
12
):
2375
-
2390
.
8.
Sabater-Lleal
M
,
Huffman
JE
,
de Vries
PS
, et al
.
Genome-wide association transethnic meta-analyses identifies novel associations regulating coagulation factor VIII and von Willebrand factor plasma levels
.
Circulation
.
2019
;
139
(
5
):
620
-
635
.
9.
Smith
NL
,
Chen
MH
,
Dehghan
A
, et al
.
Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: the CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium
.
Circulation
.
2010
;
121
(
12
):
1382
-
1392
.
10.
Huffman
JE
,
de Vries
PS
,
Morrison
AC
, et al
.
Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF
.
Blood
.
2015
;
126
(
11
):
e19
-
29
.
11.
Pankratz
N
,
Wei
P
,
Brody
JA
, et al
.
Whole-exome sequencing of 14 389 individuals from the ESP and CHARGE consortia identifies novel rare variation associated with hemostatic factors
.
Hum Mol Genet
.
2022
;
31
(
18
):
3120
-
3132
.
12.
Guo
Y
,
Rist
PM
,
Sabater-Lleal
M
, et al
.
Association between hemostatic profile and migraine: a Mendelian Randomization Analysis
.
Neurology
.
2021
;
96
(
20
):
e2481
-
e2487
.
13.
Small
AM
,
Huffman
JE
,
Klarin
D
, et al
.
Mendelian randomization analysis of hemostatic factors and their contribution to peripheral artery disease-brief report
.
Arterioscler Thromb Vasc Biol
.
2021
;
41
(
1
):
380
-
386
.
14.
Taliun
D
,
Harris
DN
,
Kessler
MD
, et al
.
Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program
.
Nature
.
2021
;
590
(
7845
):
290
-
299
.
15.
Kowalski
MH
,
Qian
H
,
Hou
Z
, et al
.
Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
.
PLoS Genet
.
2019
;
15
(
12
):
e1008500
.
16.
Psaty
BM
,
O'Donnell
CJ
,
Gudnason
V
, et al
.
Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts
.
Circ Cardiovasc Genet
.
2009
;
2
(
1
):
73
-
80
.
17.
McCarthy
S
,
Das
S
,
Kretzschmar
W
, et al
.
A reference panel of 64,976 haplotypes for genotype imputation
.
Nat Genet
.
2016
;
48
(
10
):
1279
-
1283
.
18.
Winkler
TW
,
Day
FR
,
Croteau-Chonka
DC
, et al
.
Quality control and conduct of genome-wide association meta-analyses
.
Nat Protoc
.
2014
;
9
(
5
):
1192
-
1212
.
19.
Conomos
MP
,
Laurie
CA
,
Stilp
AM
, et al
.
Genetic Diversity and Association Studies in US Hispanic/Latino Populations: applications in the Hispanic Community Health Study/Study of Latinos
.
Am J Hum Genet
.
2016
;
98
(
1
):
165
-
184
.
20.
Conomos
MP
,
Miller
MB
,
Thornton
TA
.
Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness
.
Genet Epidemiol
.
2015
;
39
(
4
):
276
-
293
.
21.
Chen
H
,
Huffman
JE
,
Brody
JA
, et al
.
Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing studies
.
Am J Hum Genet
.
2019
;
104
(
2
):
260
-
274
.
22.
Brody
JA
,
Morrison
AC
,
Bis
JC
, et al
.
Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology
.
Nat Genet
.
2017
;
49
(
11
):
1560
-
1563
.
23.
Willer
CJ
,
Li
Y
,
Abecasis
GR
.
METAL: fast and efficient meta-analysis of genomewide association scans
.
Bioinformatics
.
2010
;
26
(
17
):
2190
-
2191
.
24.
Lin
DY
.
A simple and accurate method to determine genomewide significance for association tests in sequencing studies
.
Genet Epidemiol
.
2019
;
43
(
4
):
365
-
372
.
25.
GTEx Consortium
.
The GTEx Consortium atlas of genetic regulatory effects across human tissues
.
Science
.
2020
;
369
(
6509
):
1318
-
1330
.
26.
Ozel
AB
,
McGee
B
,
Siemieniak
D
, et al
.
Genome-wide studies of von Willebrand factor propeptide identify loci contributing to variation in propeptide levels and von Willebrand factor clearance
.
J Thromb Haemost
.
2016
;
14
(
9
):
1888
-
1898
.
27.
Malik
R
,
Chauhan
G
,
Traylor
M
, et al
.
Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes
.
Nat Genet
.
2018
;
50
(
4
):
524
-
537
.
28.
Nikpay
M
,
Goel
A
,
Won
HH
, et al
.
A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease
.
Nat Genet
.
2015
;
47
(
10
):
1121
-
1130
.
29.
Klarin
D
,
Lynch
J
,
Aragam
K
, et al
.
Genome-wide association study of peripheral artery disease in the Million Veteran Program
.
Nat Med
.
2019
;
25
(
8
):
1274
-
1279
.
30.
Song
J
,
Chen
F
,
Campos
M
, et al
.
Quantitative influence of ABO blood groups on factor VIII and its ratio to von Willebrand factor, novel observations from an ARIC Study of 11,673 Subjects
.
PLoS One
.
2015
;
10
(
8
):
e0132626
.
31.
Hao
Y
,
Crequer-Grandhomme
A
,
Javier
N
, et al
.
Structures and mechanism of human glycosyltransferase beta1,3-N-acetylglucosaminyltransferase 2 (B3GNT2), an important player in immune homeostasis
.
J Biol Chem
.
2021
;
296
:
100042
.
32.
Canis
K
,
McKinnon
TA
,
Nowak
A
, et al
.
Mapping the N-glycome of human von Willebrand factor
.
Biochem J
.
2012
;
447
(
2
):
217
-
228
.
33.
Bourdi
M
,
Demady
D
,
Martin
JL
, et al
.
cDNA cloning and baculovirus expression of the human liver endoplasmic reticulum P58: characterization as a protein disulfide isomerase isoform, but not as a protease or a carnitine acyltransferase
.
Arch Biochem Biophys
.
1995
;
323
(
2
):
397
-
403
.
34.
McMullen
BA
,
Fujikawa
K
,
Davie
EW
,
Hedner
U
,
Ezban
M
.
Locations of disulfide bonds and free cysteines in the heavy and light chains of recombinant human factor VIII (antihemophilic factor A)
.
Protein Sci
.
1995
;
4
(
4
):
740
-
746
.
35.
Denis
CV
.
Molecular and cellular biology of von Willebrand factor
.
Int J Hematol
.
2002
;
75
(
1
):
3
-
8
.
36.
Lippok
S
,
Kolsek
K
,
Lof
A
, et al
.
von Willebrand factor is dimerized by protein disulfide isomerase
.
Blood
.
2016
;
127
(
9
):
1183
-
1191
.
37.
Grewal
PK
,
Uchiyama
S
,
Ditto
D
, et al
.
The Ashwell receptor mitigates the lethal coagulopathy of sepsis
.
Nat Med
.
2008
;
14
(
6
):
648
-
655
.
38.
Bovenschen
N
,
Rijken
DC
,
Havekes
LM
,
van Vlijmen
BJ
,
Mertens
K
.
The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor
.
J Thromb Haemost
.
2005
;
3
(
6
):
1257
-
1265
.
39.
Weng
LC
,
Cushman
M
,
Pankow
JS
, et al
.
A genetic association study of activated partial thromboplastin time in European Americans and African Americans: the ARIC Study
.
Hum Mol Genet
.
2015
;
24
(
8
):
2401
-
2408
.
40.
O'Donnell
J
,
Boulton
FE
,
Manning
RA
,
Laffan
MA
.
Genotype at the secretor blood group locus is a determinant of plasma von Willebrand factor level
.
Br J Haematol
.
2002
;
116
(
2
):
350
-
356
.
41.
O'Donnell
JS
,
McKinnon
TA
,
Crawley
JT
,
Lane
DA
,
Laffan
MA
.
Bombay phenotype is associated with reduced plasma-VWF levels and an increased susceptibility to ADAMTS13 proteolysis
.
Blood
.
2005
;
106
(
6
):
1988
-
1991
.
42.
Fry
AE
,
Ghansa
A
,
Small
KS
, et al
.
Positive selection of a CD36 nonsense variant in sub-Saharan Africa, but no association with severe malaria phenotypes
.
Hum Mol Genet
.
2009
;
18
(
14
):
2683
-
2692
.
43.
Sun
Q
,
Graff
M
,
Rowland
B
, et al
.
Analyses of biomarker traits in diverse UK biobank participants identify associations missed by European-centric analysis strategies
.
J Hum Genet
.
2022
;
67
(
2
):
87
-
93
.
44.
Hu
Y
,
Stilp
AM
,
McHugh
CP
, et al
.
Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: the NHLBI TOPMed program
.
Am J Hum Genet
.
2021
;
108
(
5
):
874
-
893
.
45.
Wojcik
GL
,
Graff
M
,
Nishimura
KK
, et al
.
Genetic analyses of diverse populations improves discovery for complex traits
.
Nature
.
2019
;
570
(
7762
):
514
-
518
.
46.
Ellis
J
,
Lange
EM
,
Li
J
, et al
.
Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association at CD36 in African Americans
.
Hum Genet
.
2014
;
133
(
8
):
985
-
995
.
47.
Auer
PL
,
Johnsen
JM
,
Johnson
AD
, et al
.
Imputation of exome sequence variants into population- based samples and blood-cell-trait-associated loci in African Americans: NHLBI GO Exome Sequencing Project
.
Am J Hum Genet
.
2012
;
91
(
5
):
794
-
808
.
48.
Rydz
N
,
Swystun
LL
,
Notley
C
, et al
.
The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels
.
Blood
.
2013
;
121
(
26
):
5228
-
5237
.
49.
Swystun
LL
,
Notley
C
,
Georgescu
I
, et al
.
The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner
.
J Thromb Haemost
.
2019
;
17
(
4
):
681
-
694
.
50.
Song
J
,
Xue
C
,
Preisser
JS
, et al
.
Association of single nucleotide polymorphisms in the ST3GAL4 gene with VWF antigen and factor VIII activity
.
PLoS One
.
2016
;
11
(
9
):
e0160757
.
51.
Ellies
LG
,
Ditto
D
,
Levy
GG
, et al
.
Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
15
):
10042
-
10047
.
52.
Bowen
DJ
,
Collins
PW
,
Lester
W
, et al
.
The prevalence of the cysteine1584 variant of von Willebrand factor is increased in type 1 von Willebrand disease: co-segregation with increased susceptibility to ADAMTS13 proteolysis but not clinical phenotype
.
Br J Haematol
.
2005
;
128
(
6
):
830
-
836
.
53.
Burgess
S
,
Davies
NM
,
Thompson
SG
.
Bias due to participant overlap in two-sample Mendelian randomization
.
Genet Epidemiol
.
2016
;
40
(
7
):
597
-
608
.
You do not currently have access to this content.
Sign in via your Institution