• Biallelic disruption of CD38 is a rare but recurrent phenomenon in anti-CD38–exposed relapsed/refractory MM.

  • Mutations in CD38 can result in variant proteins that remain expressed but confer differential resistance to commercial drugs.

Abstract

Monoclonal antibodies targeting CD38 are a therapeutic mainstay in multiple myeloma (MM). Although they have contributed to improved outcomes, most patients still experience disease relapse, and little is known about tumor-intrinsic mechanisms of resistance to these drugs. Antigen escape has been implicated as a mechanism of tumor-cell evasion in immunotherapy. Yet, it is unknown whether MM cells can develop permanent resistance to anti-CD38 antibodies by acquiring genomic events leading to biallelic disruption of the CD38 gene locus. Here, we analyzed whole-genome and whole-exome sequencing data from patients 701 newly diagnosed MM, 67 patients at relapse with naivety to anti-CD38 antibodies, and 50 patients collected at relapse after anti-CD38 antibodies. We report a loss of CD38 in 10 of 50 patients (20%) after CD38 therapy, 3 of whom exhibited a loss of both copies. Two of these cases showed convergent evolution in which distinct subclones independently acquired similar advantageous variants. Functional studies on missense mutations involved in biallelic CD38 events revealed that 2 variants, L153H and C275Y, decreased binding affinity and antibody-dependent cellular cytotoxicity of the commercial antibodies daratumumab and isatuximab. However, a third mutation, R140G, conferred selective resistance to daratumumab, while retaining sensitivity to isatuximab. Clinically, patients with MM are often rechallenged with CD38 antibodies after disease progression and these data suggest that next-generation sequencing may play a role in subsequent treatment selection for a subset of patients.

1.
Facon
T
,
Dimopoulos
M-A
,
Leleu
XP
, et al
.
Isatuximab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma
.
N Engl J Med
.
2024
;
391
(
17
):
1597
-
1609
.
2.
Facon
T
,
Kumar
S
,
Plesner
T
, et al
.
Daratumumab plus lenalidomide and dexamethasone for untreated myeloma
.
N Engl J Med
.
2019
;
380
(
22
):
2104
-
2115
.
3.
Leleu
X
,
Hulin
C
,
Lambert
J
, et al
.
Isatuximab, lenalidomide, dexamethasone and bortezomib in transplant-ineligible multiple myeloma: the randomized phase 3 BENEFIT trial
.
Nat Med
.
2024
;
30
(
8
):
2235
-
2241
.
4.
Leypoldt
LB
,
Tichy
D
,
Besemer
B
, et al
.
Isatuximab, carfilzomib, lenalidomide, and dexamethasone for the treatment of high-risk newly diagnosed multiple myeloma
.
J Clin Oncol
.
2024
;
42
(
1
):
26
-
37
.
5.
Sonneveld
P
,
Dimopoulos
MA
,
Boccadoro
M
, et al
.
Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma
.
N Engl J Med
.
2024
;
390
(
4
):
301
-
313
.
6.
Voorhees
PM
,
Kaufman
JL
,
Laubach
J
, et al
.
Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial
.
Blood
.
2020
;
136
(
8
):
936
-
945
.
7.
Attal
M
,
Richardson
PG
,
Rajkumar
SV
, et al
.
Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study
.
The Lancet
.
2019
;
394
(
10214
):
2096
-
2107
.
8.
Dimopoulos
MA
,
Oriol
A
,
Nahi
H
, et al
.
Daratumumab, lenalidomide, and dexamethasone for multiple myeloma
.
N Engl J Med
.
2016
;
375
(
14
):
1319
-
1331
.
9.
Gandhi
UH
,
Cornell
RF
,
Lakshman
A
, et al
.
Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy
.
Leukemia
.
2019
;
33
(
9
):
2266
-
2275
.
10.
Saltarella
I
,
Desantis
V
,
Melaccio
A
, et al
.
Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma
.
Cells
.
2020
;
9
(
1
):
167
.
11.
Van de Donk
NW
,
Usmani
SZ
.
CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance
.
Front Immunol
.
2018
;
9
:
2134
.
12.
Ise
M
,
Matsubayashi
K
,
Tsujimura
H
,
Kumagai
K
.
Loss of CD38 expression in relapsed refractory multiple myeloma
.
Clin Lymphoma Myeloma Leuk
.
2016
;
16
(
5
):
e59
-
e64
.
13.
Minarik
J
,
Novak
M
,
Flodr
P
, et al
.
CD 38-negative relapse in multiple myeloma after daratumumab-based chemotherapy
.
Eur J Haematol
.
2017
;
99
(
2
):
186
-
189
.
14.
Mikhael
J
,
Belhadj-Merzoug
K
,
Hulin
C
, et al
.
A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab
.
Blood Cancer J
.
2021
;
11
(
5
):
89
.
15.
Perez de Acha
O
,
Reiman
L
,
Jayabalan
DS
, et al
.
CD38 antibody re-treatment in daratumumab-refractory multiple myeloma after time on other therapies
.
Blood Adv
.
2023
;
7
(
21
):
6430
-
6440
.
16.
Cohen
YC
,
Zada
M
,
Wang
S-Y
, et al
.
Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing
.
Nat Med
.
2021
;
27
(
3
):
491
-
503
.
17.
Maura
F
,
Boyle
EM
,
Coffey
D
, et al
.
Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens
.
Nat Cancer
.
2023
;
4
(
12
):
1660
-
1674
.
18.
Ziccheddu
B
,
Giannotta
C
,
D’Agostino
M
, et al
.
Genomic and immune determinants of resistance to daratumumab-based therapy in relapsed refractory multiple myeloma
.
Blood Cancer J
.
2024
;
14
(
1
):
117
.
19.
Lee
H
,
Ahn
S
,
Maity
R
, et al
.
Mechanisms of antigen escape from BCMA-or GPRC5D-targeted immunotherapies in multiple myeloma
.
Nat Med
.
2023
;
29
(
9
):
2295
-
2306
.
20.
Papadimitriou
M
,
Ahn
S
,
Diamond
B
, et al
.
Timing antigenic escape in multiple myeloma treated with T-cell redirecting immunotherapies
.
bioRxiv
.
Preprint posted online 26 May 2024
.
21.
Grab
AL
,
Kim
PS
,
John
L
, et al
.
Pre-clinical assessment of SAR442257, a CD38/CD3xCD28 trispecific T cell engager in treatment of relapsed/refractory multiple myeloma
.
Cells
.
2024
;
13
(
10
):
879
.
22.
Grandclément
C
,
Estoppey
C
,
Dheilly
E
, et al
.
Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma
.
Nat Commun
.
2024
;
15
(
1
):
2054
.
23.
Mei
H
,
Li
C
,
Jiang
H
, et al
.
A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma
.
J Hematol Oncol
.
2021
;
14
:
161
.
24.
Portuguese
AJ
,
Fang
M
,
Tuazon
SA
, et al
.
Acquired CD38 gene deletion as a mechanism of tumor antigen escape in multiple myeloma
.
Blood Adv
.
2023
;
7
(
23
):
7235
-
7238
.
25.
Skerget
S
,
Penaherrera
D
,
Chari
A
, et al
.
Comprehensive molecular profiling of multiple myeloma identifies refined copy number and expression subtypes
.
Nat Genet
.
2024
;
56
(
9
):
1878
-
1889
.
26.
Poos
AM
,
Prokoph
N
,
Przybilla
MJ
, et al
.
Resolving therapy resistance mechanisms in multiple myeloma by multiomics subclone analysis
.
Blood
.
2023
;
142
(
19
):
1633
-
1646
.
27.
Rausch
T
,
Zichner
T
,
Schlattl
A
,
Stütz
AM
,
Benes
V
,
Korbel
JO
.
DELLY: structural variant discovery by integrated paired-end and split-read analysis
.
Bioinformatics
.
2012
;
28
(
18
):
i333
-
i339
.
28.
Chen
X
,
Schulz-Trieglaff
O
,
Shaw
R
, et al
.
Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications
.
Bioinformatics
.
2016
;
32
(
8
):
1220
-
1222
.
29.
Wala
JA
,
Bandopadhayay
P
,
Greenwald
NF
, et al
.
SvABA: genome-wide detection of structural variants and indels by local assembly
.
Genome Res
.
2018
;
28
(
4
):
581
-
591
.
30.
Reisinger
E
,
Genthner
L
,
Kerssemakers
J
, et al
.
OTP: An automatized system for managing and processing NGS data
.
J Biotechnol
.
2017
;
261
:
53
-
62
.
31.
Rimmer
A
,
Phan
H
,
Mathieson
I
, et al
.
Integrating mapping-assembly-and haplotype-based approaches for calling variants in clinical sequencing applications
.
Nat Genet
.
2014
;
46
(
8
):
912
-
918
.
32.
Danecek
P
,
Bonfield
JK
,
Liddle
J
, et al
.
Twelve years of SAMtools and BCFtools
.
Gigascience
.
2021
;
10
(
2
):
giab008
.
33.
Tarabichi
M
,
Salcedo
A
,
Deshwar
AG
, et al
.
A practical guide to cancer subclonal reconstruction from DNA sequencing
.
Nat Methods
.
2021
;
18
(
2
):
144
-
155
.
34.
Rustad
EH
,
Yellapantula
VD
,
Glodzik
D
, et al
.
Revealing the impact of structural variants in multiple myeloma
.
Blood Cancer Discov
.
2020
;
1
(
3
):
258
-
273
.
35.
Nik-Zainal
S
,
Van Loo
P
,
Wedge
DC
, et al
.
The life history of 21 breast cancers
.
Cell
.
2012
;
149
(
5
):
994
-
1007
.
36.
Panakkal
V
,
Lakshman
A
,
Shi
M
, et al
.
Utility of flow cytometry screening before MRD testing in multiple myeloma
.
Blood Cancer J
.
2023
;
13
(
1
):
55
.
37.
Maura
F
,
Rajanna
AR
,
Ziccheddu
B
, et al
.
Genomic classification and individualized prognosis in multiple myeloma
.
J Clin Oncol
.
2024
;
42
(
11
):
1229
-
1240
.
38.
Maura
F
,
Bolli
N
,
Angelopoulos
N
, et al
.
Genomic landscape and chronological reconstruction of driver events in multiple myeloma
.
Nat Commun
.
2019
;
10
(
1
):
3835
.
39.
Landau
HJ
,
Yellapantula
V
,
Diamond
BT
, et al
.
Accelerated single cell seeding in relapsed multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
3617
.
40.
Cirrincione
AM
,
Poos
AM
,
Ziccheddu
B
, et al
.
The biological and clinical impact of deletions before and after large chromosomal gains in multiple myeloma
.
Blood
.
2024
;
144
(
7
):
771
-
783
.
41.
Derrien
J
,
Gastineau
S
,
Frigout
A
, et al
.
Acquired resistance to a GPRC5D-directed T-cell engager in multiple myeloma is mediated by genetic or epigenetic target inactivation
.
Nat Cancer
.
2023
;
4
(
11
):
1536
-
1543
.
42.
Truger
MS
,
Duell
J
,
Zhou
X
, et al
.
Single-and double-hit events in genes encoding immune targets before and after T cell–engaging antibody therapy in MM
.
Blood Adv
.
2021
;
5
(
19
):
3794
-
3798
.
43.
Lee
HT
,
Kim
Y
,
Park
UB
,
Jeong
TJ
,
Lee
SH
,
Heo
Y-S
.
Crystal structure of CD38 in complex with daratumumab, a first-in-class anti-CD38 antibody drug for treating multiple myeloma
.
Biochem Biophys Res Commun
.
2021
;
536
:
26
-
31
.
44.
Martin
TG
,
Corzo
K
,
Chiron
M
, et al
.
Therapeutic opportunities with pharmacological inhibition of CD38 with isatuximab
.
Cells
.
2019
;
8
(
12
):
1522
.
45.
Badros
AZ
,
Foster
L
,
Anderson
Jr LD
, et al
.
Daratumumab with lenalidomide as maintenance after transplant in newly diagnosed multiple myeloma: the AURIGA study
.
Blood
.
2024
;
145
(
3
):
300
-
310
.
You do not currently have access to this content.
Sign in via your Institution