• αKG induces leucine catabolism in a BCAT2–dependent manner, suppresses mTORC1, and displays antilymphoma properties in vitro and in vivo.

  • Toxicity-free dietary supplementation of αKG hinders lymphoma development in vivo in association with suppression of energy metabolism.

Abstract

Targeting metabolic dependencies and “starving” malignant cells have long been considered potential strategies to treat cancer. However, with rare exceptions, the implementation of these maneuvers has been fraught with limited activity and lack of specificity. Multiple cytoplasmic and mitochondrial transaminases catalyze reactions that lead to amino acid catabolism. These enzymes use α-ketoglutarate (αKG) as a nitrogen acceptor, and accumulation of the competitive inhibitor metabolite D-2-hydroxyglutarate perturbs their function. We postulated that exogenous αKG supplementation would influence the directionality of these reactions and deplete amino acids in cancer cells. Using B-cell lymphoma as a model system, we found that αKG mediates a rapid and sustained amino acid depletion, principally of aspartate and branched-chain leucine, valine, and isoleucine. The decrease in leucine levels influenced mammalian target of rapamycin complex 1 (mTORC1) subcellular movement, suppressed its activity, and associated with inhibition of B-cell lymphoma growth in vitro and in vivo. Increasing import of aspartate or leucine levels in the lymphoma cells, genetically forcing mTORC1 lysosomal localization or blocking leucine catabolism through branched-chain amino acid transaminase 2 deletion, all blunted the antilymphoma effects of αKG. In addition, long-term dietary supplementation of αKG, a toxicity-free strategy, significantly hindered lymphoma development in Eμ-Myc mice, in association with amino acid perturbation and impaired energy generation. We posit that αKG supplementation, which has been shown to improve health and life span in mice, also encodes marked anticancer properties.

1.
Luengo
A
,
Gui
DY
,
Vander Heiden
MG
.
Targeting metabolism for cancer therapy
.
Cell Chem Biol
.
2017
;
24
(
9
):
1161
-
1180
.
2.
Butler
M
,
van der Meer
LT
,
van Leeuwen
FN
.
Amino acid depletion therapies: starving cancer cells to death
.
Trends Endocrinol Metab
.
2021
;
32
(
6
):
367
-
381
.
3.
Lieu
EL
,
Nguyen
T
,
Rhyne
S
,
Kim
J
.
Amino acids in cancer
.
Exp Mol Med
.
2020
;
52
(
1
):
15
-
30
.
4.
Wetzler
M
,
Sanford
BL
,
Kurtzberg
J
, et al
.
Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: Cancer and Leukemia Group B Study 9511
.
Blood
.
2007
;
109
(
10
):
4164
-
4167
.
5.
Grima-Reyes
M
,
Vandenberghe
A
,
Nemazanyy
I
, et al
.
Tumoral microenvironment prevents de novo asparagine biosynthesis in B cell lymphoma, regardless of ASNS expression
.
Sci Adv
.
2022
;
8
(
27
):
eabn6491
.
6.
Legendre
F
,
MacLean
A
,
Appanna
VP
,
Appanna
VD
.
Biochemical pathways to alpha-ketoglutarate, a multi-faceted metabolite
.
World J Microbiol Biotechnol
.
2020
;
36
(
8
):
123
.
7.
Sivanand
S
,
Vander Heiden
MG
.
Emerging roles for branched-chain amino acid metabolism in cancer
.
Cancer Cell
.
2020
;
37
(
2
):
147
-
156
.
8.
McBrayer
SK
,
Mayers
JR
,
DiNatale
GJ
, et al
.
Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma
.
Cell
.
2018
;
175
(
1
):
101
-
116.e25
.
9.
Lin
AP
,
Qiu
Z
,
Ethiraj
P
, et al
.
MYC, mitochondrial metabolism and O-GlcNAcylation converge to modulate the activity and subcellular localization of DNA and RNA demethylases
.
Leukemia
.
2022
;
36
(
4
):
1150
-
1159
.
10.
Qiu
Z
,
Lin
AP
,
Jiang
S
, et al
.
MYC regulation of D2HGDH and L2HGDH influences the epigenome and epitranscriptome
.
Cell Chem Biol
.
2020
;
27
(
5
):
538
-
550.e7
.
11.
Elkashef
SM
,
Lin
AP
,
Myers
J
, et al
.
IDH mutation, competitive inhibition of FTO, and RNA methylation
.
Cancer Cell
.
2017
;
31
(
5
):
619
-
620
.
12.
Lin
AP
,
Abbas
S
,
Kim
SW
, et al
.
D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2
.
Nat Commun
.
2015
;
6
:
7768
.
13.
Asadi
SA
,
Edgar
D
,
Liao
CY
, et al
.
Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice
.
Cell Metab
.
2020
;
32
(
3
):
447
-
456.e6
.
14.
Chin
RM
,
Fu
X
,
Pai
MY
, et al
.
The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR
.
Nature
.
2014
;
510
(
7505
):
397
-
401
.
15.
Naeini
SH
,
Mavaddatiyan
L
,
Kalkhoran
ZR
,
Taherkhani
S
,
Talkhabi
M
.
Alpha-ketoglutarate as a potent regulator for lifespan and healthspan: evidences and perspectives
.
Exp Gerontol
.
2023
;
175
:
112154
.
16.
Suhasini
AN
,
Wang
L
,
Holder
KN
, et al
.
A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma
.
Leukemia
.
2016
;
30
(
3
):
617
-
626
.
17.
Cooney
JD
,
Lin
AP
,
Jiang
D
, et al
.
Synergistic targeting of the regulatory and catalytic subunits of PI3Kδin mature B-cell malignancies
.
Clin Cancer Res
.
2018
;
24
(
5
):
1103
-
1113
.
18.
Ethiraj
P
,
Sasi
B
,
Holder
KN
, et al
.
Cyclic-AMP signalling, MYC and hypoxia-inducible factor 1α intersect to regulate angiogenesis in B-cell lymphoma
.
Br J Haematol
.
2022
;
198
(
2
):
349
-
359
.
19.
Sancak
Y
,
Bar-Peled
L
,
Zoncu
R
,
Markhard
AL
,
Nada
S
,
Sabatini
DM
.
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
.
Cell
.
2010
;
141
(
2
):
290
-
303
.
20.
Jiang
D
,
Aguiar
RC
.
MicroRNA-155 controls RB phosphorylation in normal and malignant B lymphocytes via the noncanonical TGF-β1/SMAD5 signaling module
.
Blood
.
2014
;
123
(
1
):
86
-
93
.
21.
Bouamar
H
,
Jiang
D
,
Wang
L
,
Lin
AP
,
Ortega
M
,
Aguiar
RC
.
MicroRNA 155 control of p53 activity is context dependent and mediated by Aicda and Socs1
.
Mol Cell Biol
.
2015
;
35
(
8
):
1329
-
1340
.
22.
Qiu
Z
,
Khalife
J
,
Ethiraj
P
, et al
.
IRF8-mutant B cell lymphoma evades immunity through a CD74-dependent deregulation of antigen processing and presentation in MHCII complexes
.
Sci Adv
.
2024
;
10
(
28
):
eadk2091
.
23.
Bouamar
H
,
Abbas
S
,
Lin
AP
, et al
.
A capture-sequencing strategy identifies IRF8, EBF1, and APRIL as novel IGH fusion partners in B-cell lymphoma
.
Blood
.
2013
;
122
(
5
):
726
-
733
.
24.
Ortega
M
,
Bhatnagar
H
,
Lin
AP
, et al
.
A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies
.
Leukemia
.
2015
;
29
(
4
):
968
-
976
.
25.
Estrada-Zuniga
CM
,
Cheng
ZM
,
Ethiraj
P
, et al
.
A RET::GRB2 fusion in pheochromocytoma defies the classic paradigm of RET oncogenic fusions
.
Cell Rep Med
.
2022
;
3
(
7
):
100686
.
26.
Guo
Q
,
Cheng
ZM
,
Gonzalez-Cantú
H
, et al
.
TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation
.
Cell Rep
.
2023
;
42
(
9
):
113070
.
27.
Tommasini-Ghelfi
S
,
Murnan
K
,
Kouri
FM
,
Mahajan
AS
,
May
JL
,
Stegh
AH
.
Cancer-associated mutation and beyond: the emerging biology of isocitrate dehydrogenases in human disease
.
Sci Adv
.
2019
;
5
(
5
):
eaaw4543
.
28.
Yang
J
,
Zhu
H
,
Zhang
T
,
Ding
J
.
Structure, substrate specificity, and catalytic mechanism of human D-2-HGDH and insights into pathogenicity of disease-associated mutations
.
Cell Discov
.
2021
;
7
(
1
):
3
.
29.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
30.
Tran
TQ
,
Hanse
EA
,
Habowski
AN
, et al
.
α-ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer
.
Nat Cancer
.
2020
;
1
(
3
):
345
-
358
.
31.
Losman
JA
,
Koivunen
P
,
Kaelin
WG
.
2-oxoglutarate-dependent dioxygenases in cancer
.
Nat Rev Cancer
.
2020
;
20
(
12
):
710
-
726
.
32.
Jaafar
C
,
Aguiar
RCT
.
Dynamic multilayered control of m6A RNA demethylase activity
.
Proc Natl Acad Sci U S A
.
2024
;
121
(
46
):
e2317847121
.
33.
Cai
Y
,
Lv
L
,
Lu
T
, et al
.
α-KG inhibits tumor growth of diffuse large B-cell lymphoma by inducing ROS and TP53-mediated ferroptosis
.
Cell Death Discov
.
2023
;
9
(
1
):
182
.
34.
Zdzisińska
B
,
Żurek
A
,
Kandefer-Szerszeń
M
.
Alpha-ketoglutarate as a molecule with pleiotropic activity: well-known and novel possibilities of therapeutic use
.
Arch Immunol Ther Exp (Warsz)
.
2017
;
65
(
1
):
21
-
36
.
35.
Abla
H
,
Sollazzo
M
,
Gasparre
G
,
Iommarini
L
,
Porcelli
AM
.
The multifaceted contribution of alpha-ketoglutarate to tumor progression: an opportunity to exploit?
.
Semin Cell Dev Biol
.
2020
;
98
:
26
-
33
.
36.
Wolfson
RL
,
Chantranupong
L
,
Saxton
RA
, et al
.
Sestrin2 is a leucine sensor for the mTORC1 pathway
.
Science
.
2016
;
351
(
6268
):
43
-
48
.
37.
Gu
Z
,
Liu
Y
,
Cai
F
, et al
.
Loss of EZH2 reprograms BCAA metabolism to drive leukemic transformation
.
Cancer Discov
.
2019
;
9
(
9
):
1228
-
1247
.
38.
Hattori
A
,
Tsunoda
M
,
Konuma
T
, et al
.
Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia
.
Nature
.
2017
;
545
(
7655
):
500
-
504
.
39.
Mitchell
SJ
,
Bernier
M
,
Mattison
JA
, et al
.
Daily fasting improves health and survival in male mice independent of diet composition and calories
.
Cell Metab
.
2019
;
29
(
1
):
221
-
228.e3
.
40.
Harrison
DE
,
Strong
R
,
Sharp
ZD
, et al
.
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
.
Nature
.
2009
;
460
(
7253
):
392
-
395
.
41.
Tian
Q
,
Zhao
J
,
Yang
Q
, et al
.
Dietary alpha-ketoglutarate promotes beige adipogenesis and prevents obesity in middle-aged mice
.
Aging Cell
.
2020
;
19
(
1
):
e13059
.
42.
Zhang
Z
,
He
C
,
Gao
Y
, et al
.
α-ketoglutarate delays age-related fertility decline in mammals
.
Aging Cell
.
2021
;
20
(
2
):
e13291
.
43.
Sultana
S
,
Talegaonkar
S
,
Nishad
DK
,
Mittal
G
,
Ahmad
FJ
,
Bhatnagar
A
.
Alpha ketoglutarate nanoparticles: a potentially effective treatment for cyanide poisoning
.
Eur J Pharm Biopharm
.
2018
;
126
:
221
-
232
.
44.
Wirén
M
,
Permert
J
,
Larsson
J
.
Alpha-ketoglutarate-supplemented enteral nutrition: effects on postoperative nitrogen balance and muscle catabolism
.
Nutrition
.
2002
;
18
(
9
):
725
-
728
.
45.
Blonde-Cynober
F
,
Aussel
C
,
Cynober
L
.
Use of ornithine alpha-ketoglutarate in clinical nutrition of elderly patients
.
Nutrition
.
2003
;
19
(
1
):
73
-
75
.
46.
Filip
RS
,
Pierzynowski
SG
,
Lindegard
B
,
Wernerman
J
,
Haratym-Maj
A
,
Podgurniak
M
.
Alpha-ketoglutarate decreases serum levels of C-terminal cross-linking telopeptide of type I collagen (CTX) in postmenopausal women with osteopenia: six-month study
.
Int J Vitam Nutr Res
.
2007
;
77
(
2
):
89
-
97
.
47.
Yuan
Y
,
Zhu
C
,
Wang
Y
, et al
.
α-ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling
.
Sci Adv
.
2022
;
8
(
18
):
eabn2879
.
48.
Issa
GC
,
DiNardo
CD
.
Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm
.
Blood Cancer J
.
2021
;
11
(
6
):
107
.
49.
Gatto
L
,
Franceschi
E
,
Tosoni
A
, et al
.
IDH inhibitors and beyond: the cornerstone of targeted glioma treatment
.
Mol Diagn Ther
.
2021
;
25
(
4
):
457
-
473
.
50.
Endicott
M
,
Jones
M
,
Hull
J
.
Amino acid metabolism as a therapeutic target in cancer: a review
.
Amino Acids
.
2021
;
53
(
8
):
1169
-
1179
.
51.
Ericksen
RE
,
Lim
SL
,
McDonnell
E
, et al
.
Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression
.
Cell Metab
.
2019
;
29
(
5
):
1151
-
1165.e6
.
You do not currently have access to this content.
Sign in via your Institution