• The treatment options for patients with relapsed or refractory PTCL are dwindling, given the paucity of drugs available for these patients.

  • Leveraging a novel polymer nanochemistry platform, we synthesized a new epigenetic modulator with superior features in T-cell malignancies.

Abstract

Histone deacetylase inhibitors (HDACis) are valued treatment options for patients with T-cell malignancies. Romidepsin is a selective class I HDACi initially approved for patients with relapsed or refractory cutaneous and peripheral T-cell lymphomas (PTCLs). Romidepsin was withdrawn from its PTCL indication following a negative randomized phase 4 study (romidepsin-CHOP [cyclophosphamide, doxorubicin hydrochloride (hydroxydaunorubicin), vincristine sulfate (Oncovin), and prednisone]) that showed no benefit over CHOP alone, further diminishing options for patients. Herein, we describe the development of, to our knowledge, a first-in-class polymer nanoparticle (PNP) of romidepsin using an innovative amphiphilic diblock copolymer–based nanochemistry platform. Nanoromidepsin exhibited superior pharmacologic properties with improved tolerability and safety in murine models of T-cell lymphoma (TCL). The PNP also exhibited superior antitumor efficacy in multiple models, including in vitro TCL cell lines, ex vivo samples from patients with large granular lymphocyte (LGL) leukemia, and murine TCL xenografts. Nanoromidepsin demonstrated greater accumulation in tumors and a statistically significant improvement in overall survival compared with romidepsin in murine xenograft models. These findings justify the clinical development of nanoromidepsin in patients with T-cell malignancies.

1.
Saksouk
N
,
Simboeck
E
,
Déjardin
J
.
Constitutive heterochromatin formation and transcription in mammals
.
Epigenetics Chromatin
.
2015
;
8
:
3
.
2.
Bradner
JE
,
West
N
,
Grachan
ML
, et al
.
Chemical phylogenetics of histone deacetylases
.
Nat Chem Biol
.
2010
;
6
(
3
):
238
-
243
.
3.
Glozak
MA
,
Sengupta
N
,
Zhang
X
,
Seto
E
.
Acetylation and deacetylation of non-histone proteins
.
Gene
.
2005
;
363
:
15
-
23
.
4.
Bachy
E
,
Camus
V
,
Thieblemont
C
, et al
.
Romidepsin plus CHOP versus CHOP in patients with previously untreated peripheral T-cell lymphoma: results of the Ro-CHOP phase III study (conducted by LYSA)
.
J Clin Oncol
.
2022
;
40
(
3
):
242
-
251
.
5.
Yao
Y
,
Zhou
Y
,
Liu
L
, et al
.
Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance
.
Front Mol Biosci
.
2020
;
7
:
193
.
6.
Gagliardi
A
,
Giuliano
E
,
Venkateswararao
E
, et al
.
Biodegradable polymeric nanoparticles for drug delivery to solid tumors
.
Front Pharmacol
.
2021
;
12
:
601626
.
7.
Jayappa
KD
,
Gordon
VL
,
Morris
CG
, et al
.
Extrinsic interactions in the microenvironment in vivo activate an antiapoptotic multidrug-resistant phenotype in CLL
.
Blood Adv
.
2021
;
5
(
17
):
3497
-
3510
.
8.
Petros
RA
,
DeSimone
JM
.
Strategies in the design of nanoparticles for therapeutic applications
.
Nat Rev Drug Discov
.
2010
;
9
(
8
):
615
-
627
.
9.
Falchi
L
,
Ma
H
,
Klein
S
, et al
.
Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: a multicenter phase 2 study
.
Blood
.
2021
;
137
(
16
):
2161
-
2170
.
10.
O’Connor
OA
,
Falchi
L
,
Lue
JK
, et al
.
Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study
.
Blood
.
2019
;
134
(
17
):
1395
-
1405
.
11.
Jain
S
,
Jirau-Serrano
X
,
Zullo
KM
, et al
.
Preclinical pharmacologic evaluation of pralatrexate and romidepsin confirms potent synergy of the combination in a murine model of human T-cell lymphoma
.
Clin Cancer Res
.
2015
;
21
(
9
):
2096
-
2106
.
12.
Scotto
L
,
Kinahan
C
,
Douglass
E
, et al
.
Targeting the T-cell lymphoma epigenome induces cell death, cancer testes antigens, immune-modulatory signaling pathways
.
Mol Cancer Ther
.
2021
;
20
(
8
):
1422
-
1430
.
13.
Coiffier
B
,
Pro
B
,
Prince
HM
, et al
.
Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy
.
J Clin Oncol
.
2012
;
30
(
6
):
631
-
636
.
14.
Piekarz
RL
,
Frye
R
,
Prince
HM
, et al
.
Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma
.
Blood
.
2011
;
117
(
22
):
5827
-
5834
.
15.
Kamaly
N
,
Xiao
Z
,
Valencia
PM
,
Radovic-Moreno
AF
,
Farokhzad
OC
.
Targeted polymeric therapeutic nanoparticles: design, development and clinical translation
.
Chem Soc Rev
.
2012
;
41
(
7
):
2971
-
3010
.
16.
Ben-Akiva
E
,
Est Witte
S
,
Meyer
RA
,
Rhodes
KR
,
Green
JJ
.
Polymeric micro- and nanoparticles for immune modulation
.
Biomater Sci
.
2018
;
7
(
1
):
14
-
30
.
17.
Cheng
CJ
,
Tietjen
GT
,
Saucier-Sawyer
JK
,
Saltzman
WM
.
A holistic approach to targeting disease with polymeric nanoparticles
.
Nat Rev Drug Discov
.
2015
;
14
(
4
):
239
-
247
.
18.
Ye
W
,
Zhu
F
,
Cai
Y
, et al
.
Improved paclitaxel delivery with PEG-b-PLA/zein nanoparticles prepared via flash nanoprecipitation
.
Int J Biol Macromol
.
2022
;
221
:
486
-
495
.
19.
Ibrahim
AH
,
Ibrahim
HM
,
Elbahwy
IA
,
Afouna
MI
,
Tagami
T
,
Ozeki
T
.
Lyophilized tablets of felodipine-loaded polymeric nanocapsules to enhance aqueous solubility: formulation and optimization
.
J Drug Deliv Sci Technology
.
2022
;
70
:
103172
.
20.
Ji
J
,
Qin
H
,
Yang
Y
,
Wu
J
,
Wu
J
.
The targeting imaging and treatment capacity of gelsolin-targeted and paclitaxel-loaded PLGA nanoparticles in vitro and in vivo
.
Front Bioeng Biotechnol
.
2022
;
10
:
933856
.
21.
Barichello
JM
,
Morishita
M
,
Takayama
K
,
Nagai
T
.
Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method
.
Drug Dev Ind Pharm
.
1999
;
25
(
4
):
471
-
476
.
22.
Fessi
H
,
Puisieux
F
,
Devissaguet
JP
,
Ammoury
N
,
Benita
S
.
Nanocapsule formation by interfacial polymer deposition following solvent displacement
.
Int J Pharmaceutics
.
1989
;
55
:
1
-
4
.
23.
Bhatia
SN
,
Chen
X
,
Dobrovolskaia
MA
,
Lammers
T
.
Cancer nanomedicine
.
Nat Rev Cancer
.
2022
;
22
(
10
):
550
-
556
.
24.
Tang
L
,
Yang
X
,
Yin
Q
, et al
.
Investigating the optimal size of anticancer nanomedicine
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
43
):
15344
-
15349
.
25.
Fang
J
,
Nakamura
H
,
Maeda
H
.
The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
.
Adv Drug Deliv Rev
.
2011
;
63
(
3
):
136
-
151
.
26.
Edlund
U
,
Albertsson
A-C
. Degradable polymer microspheres for controlled drug delivery.
Degradable Aliphatic Polyesters
. (1st ed) .
Springer Berlin Heidelberg
;
2002
:
67
-
112
.
27.
Musumeci
T
,
Ventura
CA
,
Giannone
I
, et al
.
PLA/PLGA nanoparticles for sustained release of docetaxel
.
Int J Pharm
.
2006
;
325
(
1-2
):
172
-
179
.
28.
Danhier
F
,
Ansorena
E
,
Silva
JM
,
Coco
R
,
Le Breton
A
,
Préat
V
.
PLGA-based nanoparticles: an overview of biomedical applications
.
J Control Release
.
2012
;
161
(
2
):
505
-
522
.
29.
Demento
SL
,
Eisenbarth
SC
,
Foellmer
HG
, et al
.
Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy
.
Vaccine
.
2009
;
27
(
23
):
3013
-
3021
.
30.
Deng
WJ
,
Yang
XQ
,
Liang
YJ
, et al
.
FG020326-loaded nanoparticle with PEG and PDLLA improved pharmacodynamics of reversing multidrug resistance in vitro and in vivo
.
Acta Pharmacol Sin
.
2007
;
28
(
6
):
913
-
920
.
31.
Istodax
. Package insert.
Bristol Myers Squibb
;
2009
.
32.
Mugheirbi
NA
,
Paluch
KJ
,
Tajber
L
.
Heat induced evaporative antisolvent nanoprecipitation (HIEAN) of itraconazole
.
Int J Pharm
.
2014
;
471
(
1-2
):
400
-
411
.
33.
Keck
CM
,
Müller
RH
.
Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation
.
Eur J Pharm Biopharm
.
2006
;
62
(
1
):
3
-
16
.
You do not currently have access to this content.
Sign in via your Institution