• JAK2V617F neutrophils evade homeostatic clearance and accumulate in MPN owing to JAK2-STAT5–dependent upregulation of CD24.

  • CD24 antibody blockade or genetic loss in MPN model restores clearance of neutrophils, improves thrombocytosis, and prevents myelofibrosis.

Abstract

Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell–driven malignancies marked by excessive myelopoiesis and high risk of myelofibrosis, which remains therapeutically challenging. Senescent neutrophils home daily to the bone marrow (BM) to be cleared by macrophages. This avoids their accumulation, which can increase the risk of chronic inflammation or oncogenesis. Neutrophils carrying the most common oncogenic MPN driver (JAK2V617F) are protected from apoptosis, which may prolong their life span and enhance their proinflammatory activity. In contrast, abnormal interactions of neutrophils with megakaryocytes (“emperipolesis”) have been associated with BM fibrosis in disparate hematologic disorders, including MPN and gray platelet syndrome; however, the underlying pathophysiology remains unclear. We investigated neutrophil homeostasis and cellular interactions in MPN. We found that senescent neutrophils evade homeostatic clearance and accumulate in JAK2V617F MPN, but not in MPN caused by the second most prevalent mutations affecting calreticulin gene. This is explained by granulocyte-macrophage colony-stimulating factor-JAK2-STAT5–dependent upregulation of the “don’t eat me” signal CD24 in neutrophils. Mechanistically, JAK2V617F CD24hi neutrophils evade efferocytosis, invade megakaryocytes, and increase active transforming growth factor β (TGF-β). Collectively, JAK2V617F neutrophil-megakaryocyte interactions promote platelet production in a humanized bioreactor and myelofibrosis in mouse models. Notably, chronic antibody blockade or genetic loss of CD24 restores clearance of senescent neutrophils and reduces emperipolesis and active TGF-β. Consequently, CD24 blockade improves thrombocytosis and prevents myelofibrosis in MPN mice. Taken together, these findings reveal defective neutrophil clearance as a cause of pathogenic microenvironmental interactions of inflammatory neutrophils with megakaryocytes, associated with myelofibrosis in MPN. Our study postulates CD24 as a candidate innate immune checkpoint in MPN.

1.
Quail
DF
,
Amulic
B
,
Aziz
M
, et al
.
Neutrophil phenotypes and functions in cancer: a consensus statement
.
J Exp Med
.
2022
;
219
(
6
):
e20220011
.
2.
Ng
MSF
,
Kwok
I
,
Tan
L
, et al
.
Deterministic reprogramming of neutrophils within tumors
.
Science
.
2024
;
383
(
6679
):
eadf6493
.
3.
Siwicki
M
,
Kubes
P
.
Neutrophils in host defense, healing, and hypersensitivity: dynamic cells within a dynamic host
.
J Allergy Clin Immunol
.
2023
;
151
(
3
):
634
-
655
.
4.
Hasselbalch
HC
.
Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer?
.
Blood
.
2012
;
119
(
14
):
3219
-
3225
.
5.
How
J
,
Garcia
JS
,
Mullally
A
.
Biology and therapeutic targeting of molecular mechanisms in MPNs
.
Blood
.
2023
;
141
(
16
):
1922
-
1933
.
6.
Méndez-Ferrer
S
,
Fang
Z
. Myeloproliferative neoplasms. In:
Bradshaw
RA
,
Hart
GW
,
Stahl
PD
, eds.
Encyclopedia of Cell Biology
. 2nd ed.
Academic Press
;
2023
:
696
-
711
.
7.
Mendez-Ferrer
S
,
Lucas
D
,
Battista
M
,
Frenette
PS
.
Haematopoietic stem cell release is regulated by circadian oscillations
.
Nature
.
2008
;
452
(
7186
):
442
-
447
.
8.
Furze
RC
,
Rankin
SM
.
Neutrophil mobilization and clearance in the bone marrow
.
Immunology
.
2008
;
125
(
3
):
281
-
288
.
9.
Casanova-Acebes
M
,
Pitaval
C
,
Weiss
LA
, et al
.
Rhythmic modulation of the hematopoietic Niche through neutrophil clearance
.
Cell
.
2013
;
153
(
5
):
1025
-
1035
.
10.
Mehrotra
P
,
Ravichandran
KS
.
Drugging the efferocytosis process: concepts and opportunities
.
Nat Rev Drug Discov
.
2022
;
21
(
8
):
601
-
620
.
11.
Frisch
BJ
,
Hoffman
CM
,
Latchney
SE
, et al
.
Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin1B
.
JCI Insight
.
2019
;
5
(
10
):
e124213
.
12.
James
C
,
Ugo
V
,
Le Couédic
JP
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature
.
2005
;
434
(
7037
):
1144
-
1148
.
13.
Kralovics
R
,
Passamonti
F
,
Buser
AS
, et al
.
A gain-of-function mutation of JAK2 in myeloproliferative disorders
.
N Engl J Med
.
2005
;
352
(
17
):
1779
-
1790
.
14.
Levine
RL
,
Wadleigh
M
,
Cools
J
, et al
.
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis
.
Cancer Cell
.
2005
;
7
(
4
):
387
-
397
.
15.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet
.
2005
;
365
(
9464
):
1054
-
1061
.
16.
Mesa
RA
,
Tefferi
A
,
Lasho
TS
, et al
.
Janus kinase 2 (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis in myelofibrosis with myeloid metaplasia
.
Leukemia
.
2006
;
20
(
10
):
1800
-
1808
.
17.
Passamonti
F
,
Rumi
E
,
Pietra
D
, et al
.
Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders
.
Blood
.
2006
;
107
(
9
):
3676
-
3682
.
18.
Guy
A
,
Favre
S
,
Labrouche-Colomer
S
, et al
.
High circulating levels of MPO-DNA are associated with thrombosis in patients with MPN
.
Leukemia
.
2019
;
33
(
10
):
2544
-
2548
.
19.
Wolach
O
,
Sellar
RS
,
Martinod
K
, et al
.
Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms
.
Sci Transl Med
.
2018
;
10
(
436
):
eaan8292
.
20.
Carobbio
A
,
Ferrari
A
,
Masciulli
A
,
Ghirardi
A
,
Barosi
G
,
Barbui
T
.
Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: a systematic review and meta-analysis
.
Blood Adv
.
2019
;
3
(
11
):
1729
-
1737
.
21.
Hasselbalch
HC
,
Elvers
M
,
Schafer
AI
.
The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms
.
Blood
.
2021
;
137
(
16
):
2152
-
2160
.
22.
Centurione
L
,
Di Baldassarre
A
,
Zingariello
M
, et al
.
Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1(low) mice
.
Blood
.
2004
;
104
(
12
):
3573
-
3580
.
23.
Guerrero
JA
,
Bennett
C
,
van der Weyden
L
, et al
.
Gray platelet syndrome: proinflammatory megakaryocytes and alpha-granule loss cause myelofibrosis and confer metastasis resistance in mice
.
Blood
.
2014
;
124
(
24
):
3624
-
3635
.
24.
Khatib-Massalha
E
,
Méndez-Ferrer
S
.
Megakaryocyte diversity in ontogeny, functions and cell-cell interactions
.
Front Oncol
.
2022
;
12
:
840044
.
25.
Ho
YH
,
Del Toro
R
,
Rivera-Torres
J
, et al
.
Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging
.
Cell Stem Cell
.
2019
;
25
(
3
):
407
-
418.e6
.
26.
Grockowiak
E
,
Korn
C
,
Rak
J
, et al
.
Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms
.
Nat Cancer
.
2023
;
4
(
8
):
1193
-
1209
.
27.
Di Buduo
CA
,
Soprano
PM
,
Tozzi
L
, et al
.
Modular flow chamber for engineering bone marrow architecture and function
.
Biomaterials
.
2017
;
146
:
60
-
71
.
28.
Rockwood
DN
,
Preda
RC
,
Yücel
T
,
Wang
X
,
Lovett
ML
,
Kaplan
DL
.
Materials fabrication from Bombyx mori silk fibroin
.
Nat Protoc
.
2011
;
6
(
10
):
1612
-
1631
.
29.
Tiedt
R
,
Hao-Shen
H
,
Sobas
MA
, et al
.
Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice
.
Blood
.
2008
;
111
(
8
):
3931
-
3940
.
30.
Li
J
,
Prins
D
,
Park
HJ
, et al
.
Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage
.
Blood
.
2018
;
131
(
6
):
649
-
661
.
31.
Rampal
R
,
Al-Shahrour
F
,
Abdel-Wahab
O
, et al
.
Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis
.
Blood
.
2014
;
123
(
22
):
e123
-
e133
.
32.
Barkal
AA
,
Brewer
RE
,
Markovic
M
, et al
.
CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy
.
Nature
.
2019
;
572
(
7769
):
392
-
396
.
33.
Weiskopf
K
,
Weissman
IL
.
Macrophages are critical effectors of antibody therapies for cancer
.
MAbs
.
2015
;
7
(
2
):
303
-
310
.
34.
Parlato
M
,
Souza-Fonseca-Guimaraes
F
,
Philippart
F
, et al
.
CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis
.
J Immunol
.
2014
;
192
(
5
):
2449
-
2459
.
35.
Jung
KC
,
Park
WS
,
Kim
HJ
, et al
.
TCR-independent and caspase-independent apoptosis of murine thymocytes by CD24 cross-linking
.
J Immunol
.
2004
;
172
(
2
):
795
-
802
.
36.
Arranz
L
,
Sánchez-Aguilera
A
,
Martín-Pérez
D
, et al
.
Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms
.
Nature
.
2014
;
512
(
7512
):
78
-
81
.
37.
Rai
S
,
Grockowiak
E
,
Hansen
N
, et al
.
Inhibition of interleukin-1beta reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm
.
Nat Commun
.
2022
;
13
(
1
):
5346
.
38.
Rai
S
,
Zhang
Y
,
Grockowiak
E
, et al
.
IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK2-mutant hematopoietic stem cells
.
Blood Adv
.
2024
;
8
(
5
):
1234
-
1249
.
39.
Cacemiro
MDC
,
Cominal
JG
,
Tognon
R
, et al
.
Philadelphia-negative myeloproliferative neoplasms as disorders marked by cytokine modulation
.
Hematol Transfus Cell Ther
.
2018
;
40
(
2
):
120
-
131
.
40.
Masselli
E
,
Pozzi
G
,
Gobbi
G
, et al
.
Cytokine profiling in myeloproliferative neoplasms: overview on phenotype correlation, outcome prediction, and role of genetic variants
.
Cells
.
2020
;
9
(
9
):
2136
.
41.
Kobayashi
SD
,
Voyich
JM
,
Whitney
AR
,
DeLeo
FR
.
Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor
.
J Leukoc Biol
.
2005
;
78
(
6
):
1408
-
1418
.
42.
Al-Shami
A
,
Mahanna
W
,
Naccache
PH
.
Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Selective activation of Jak2, Stat3, and Stat5b
.
J Biol Chem
.
1998
;
273
(
2
):
1058
-
1063
.
43.
Cui
Y
,
Riedlinger
G
,
Miyoshi
K
, et al
.
Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation
.
Mol Cell Biol
.
2004
;
24
(
18
):
8037
-
8047
.
44.
Wang
J
,
Hayashi
Y
,
Yokota
A
, et al
.
Expansion of EPOR-negative macrophages besides erythroblasts by elevated EPOR signaling in erythrocytosis mouse models
.
Haematologica
.
2018
;
103
(
1
):
40
-
50
.
45.
Arciprete
F
,
Verachi
P
,
Martelli
F
, et al
.
Inhibition of CXCR1/2 reduces the emperipolesis between neutrophils and megakaryocytes in the Gata1low model of myelofibrosis
.
Exp Hematol
.
2023
;
121
:
30
-
37
.
46.
Carrelha
J
,
Meng
Y
,
Kettyle
LM
, et al
.
Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells
.
Nature
.
2018
;
554
(
7690
):
106
-
111
.
47.
Niswander
LM
,
Fegan
KH
,
Kingsley
PD
,
McGrath
KE
,
Palis
J
.
SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury
.
Blood
.
2014
;
124
(
2
):
277
-
286
.
48.
Di Buduo
CA
,
Laurent
PA
,
Zaninetti
C
, et al
.
Miniaturized 3D bone marrow tissue model to assess response to Thrombopoietin-receptor agonists in patients
.
Elife
.
2021
;
10
:
e58775
.
49.
Cunin
P
,
Bouslama
R
,
Machlus
KR
, et al
.
Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets
.
Elife
.
2019
;
8
:
e44031
.
50.
Petzold
T
,
Zhang
Z
,
Ballesteros
I
, et al
.
Neutrophil "plucking" on megakaryocytes drives platelet production and boosts cardiovascular disease
.
Immunity
.
2022
;
55
(
12
):
2285
-
2299.e7
.
51.
Li
O
,
Chang
X
,
Zhang
H
, et al
.
Massive and destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts
.
J Exp Med
.
2006 Jul 10
;
203
(
7
):
1713
-
1720
.
52.
Aigner
S
,
Sthoeger
ZM
,
Fogel
M
, et al
.
CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells
.
Blood
.
1997
;
89
(
9
):
3385
-
3395
.
53.
Di Buduo
CA
,
Alberelli
MA
,
Glembostky
AC
, et al
.
Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syndrome patients
.
Sci Rep
.
2016
;
6
:
23213
.
54.
Spangrude
GJ
,
Lewandowski
D
,
Martelli
F
, et al
.
P-selectin sustains extramedullary hematopoiesis in the Gata1 low model of myelofibrosis
.
Stem Cells
.
2016
;
34
(
1
):
67
-
82
.
55.
Schmitt
A
,
Jouault
H
,
Guichard
J
,
Wendling
F
,
Drouin
A
,
Cramer
EM
.
Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis
.
Blood
.
2000
;
96
(
4
):
1342
-
1347
.
56.
Chagraoui
H
,
Komura
E
,
Tulliez
M
,
Giraudier
S
,
Vainchenker
W
,
Wendling
F
.
Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice
.
Blood
.
2002
;
100
(
10
):
3495
-
3503
.
57.
Badalucco
S
,
Di Buduo
CA
,
Campanelli
R
, et al
.
Involvement of TGFβ1 in autocrine regulation of proplatelet formation in healthy subjects and patients with primary myelofibrosis
.
Haematologica
.
2013
;
98
(
4
):
514
-
517
.
58.
Evrard
S
,
Bluteau
O
,
Tulliez
M
, et al
.
Thrombospondin-1 is not the major activator of TGF-β1 in thrombopoietin-induced myelofibrosis
.
Blood
.
2011
;
117
(
1
):
246
-
249
.
59.
Schischlik
F
,
Jäger
R
,
Rosebrock
F
, et al
.
Mutational landscape of the transcriptome offers putative targets for immunotherapy of myeloproliferative neoplasms
.
Blood
.
2019
;
134
(
2
):
199
-
210
.
60.
Méndez-Ferrer
S
,
Bonnet
D
,
Steensma
DP
, et al
.
Bone marrow niches in haematological malignancies
.
Nat Rev Cancer
.
2020
;
20
(
5
):
285
-
298
.
61.
Schmitt-Graeff
AH
,
Nitschke
R
,
Zeiser
R
.
The hematopoietic niche in myeloproliferative neoplasms
.
Mediators Inflamm
.
2015
;
2015
:
347270
.
62.
Margraf
A
,
Lowell
CA
,
Zarbock
A
.
Neutrophils in acute inflammation: current concepts and translational implications
.
Blood
.
2022
;
139
(
14
):
2130
-
2144
.
63.
Armand
P
.
Immune checkpoint blockade in hematologic malignancies
.
Blood
.
2015
;
125
(
22
):
3393
-
3400
.
64.
Zeiser
R
,
Vago
L
.
Mechanisms of immune escape after allogeneic hematopoietic cell transplantation
.
Blood
.
2019
;
133
(
12
):
1290
-
1297
.
65.
Braun
LM
,
Zeiser
R
.
Immunotherapy in myeloproliferative diseases
.
Cells
.
2020
;
9
(
6
):
1559
.
66.
Majeti
R
,
Chao
MP
,
Alizadeh
AA
, et al
.
CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells
.
Cell
.
2009
;
138
(
2
):
286
-
299
.
67.
Jiang
C
,
Sun
H
,
Jiang
Z
,
Tian
W
,
Cang
S
,
Yu
J
.
Targeting the CD47/SIRPα pathway in malignancies: recent progress, difficulties and future perspectives
.
Front Oncol
.
2024
;
14
:
1378647
.
68.
Prestipino
A
,
Emhardt
AJ
,
Aumann
K
, et al
.
Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms
.
Sci Transl Med
.
2018
;
10
(
429
):
eaam7729
.
69.
Abou Dalle
I
,
Kantarjian
H
,
Daver
N
, et al
.
Phase II study of single-agent nivolumab in patients with myelofibrosis
.
Ann Hematol
.
2021
;
100
(
12
):
2957
-
2960
.
70.
Hobbs
G
,
Cimen Bozkus
C
,
Moshier
E
, et al
.
PD-1 inhibition in advanced myeloproliferative neoplasms
.
Blood Adv
.
2021
;
5
(
23
):
5086
-
5097
.
71.
Schmidt
D
,
Endres
C
,
Hoefflin
R
, et al
.
Oncogenic calreticulin induces immune escape by stimulating TGFβ expression and regulatory T-cell expansion in the bone marrow microenvironment
.
Cancer Res
.
2024
;
84
(
18
):
2985
-
3003
.
72.
Benkerrou
M
,
Jais
JP
,
Leblond
V
, et al
.
Anti-B-cell monoclonal antibody treatment of severe posttransplant B-lymphoproliferative disorder: prognostic factors and long-term outcome
.
Blood
.
1998
;
92
(
9
):
3137
-
3147
.
73.
Larsen
TE
.
Emperipolesis of granular leukocytes within megakaryocytes in human hemopoietic bone marrow
.
Am J Clin Pathol
.
1970
;
53
(
4
):
485
-
489
.
74.
Challen
GA
,
Boles
NC
,
Chambers
SM
,
Goodell
MA
.
Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1
.
Cell Stem Cell
.
2010
;
6
(
3
):
265
-
278
.
75.
Ruscetti
FW
,
Akel
S
,
Bartelmez
SH
.
Autocrine transforming growth factor-beta regulation of hematopoiesis: many outcomes that depend on the context
.
Oncogene
.
2005
;
24
(
37
):
5751
-
5763
.
76.
Abbonante
V
,
Di Buduo
CA
,
Gruppi
C
, et al
.
Thrombopoietin/TGF-β1 loop regulates megakaryocyte extracellular matrix component synthesis
.
Stem Cells
.
2016
;
34
(
4
):
1123
-
1133
.
77.
Gostynska
S
,
Venkatesan
T
,
Subramani
K
, et al
.
Megakaryocyte/platelet-derived TGF-β1 inhibits megakaryopoiesis in bone marrow by regulating thrombopoietin production in liver
.
Blood Adv
.
2022
;
6
(
11
):
3321
-
3328
.
78.
Sims
MC
,
Mayer
L
,
Collins
JH
, et al
.
Novel manifestations of immune dysregulation and granule defects in gray platelet syndrome
.
Blood
.
2020
;
136
(
17
):
1956
-
1967
.
You do not currently have access to this content.
Sign in via your Institution