• Compound loss of BAP1 and TP53 transforms a heterogeneous population of erythroid-primed multipotent progenitors.

  • BAP1-deficient erythroleukemia is dependent on BCL2L1 expression and sensitive to B-cell lymphoma–extra large inhibitors.

Abstract

Mutations in TP53 are mutually exclusive with other known drivers of myeloid transformation and define a distinct molecular subtype within de novo acute myeloid leukemia (AML) that is associated with a complex karyotype, resistance to chemotherapy, and poor prognosis. Although TP53 defects are rare in de novo AML, biallelic mutations are a defining molecular feature of erythroleukemia. The genetic alterations that cooperate with defective TP53 to transform erythroid progenitors remain unknown. We found that loss of BAP1 (BRCA1-associated protein 1) co-occurs in one-third of patients with TP53-mutated AML, is associated with an erythroid-primed gene expression signature, and confers an additional adverse effect on overall survival. BAP1 is a tumor suppressor involved in the DNA damage response as well as epigenetic regulation through histone H2AK119 deubiquitination. Although Bap1KO mice develop myelodysplasia with prominent dyserythropoiesis, combined deletion of Bap1 and Trp53 caused transplantable erythroleukemia, and occasionally mixed AML, mirroring the heterogeneity of human disease. Bulk and single-cell RNA sequencing coupled to chromatin immunoprecipitation sequencing in hematopoietic progenitors revealed that Bap1 loss triggers a proinflammatory response and cooperates with Trp53 deficiency to transform erythroid-primed multipotent progenitors. Mechanistically, genomic instability led to the development of erythroleukemia, whereas epigenetic deregulation caused myelomonocytic skewing suggesting a dichotomous and context dependent role for BAP1. We also demonstrate that BAP1-deficient erythroleukemia is dependent on BCL2L1 expression and is sensitive to B-cell lymphoma–extra large inhibitors in vivo.

1.
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
2.
Patel
JP
,
Gönen
M
,
Figueroa
ME
, et al
.
Prognostic relevance of integrated genetic profiling in acute myeloid leukemia
.
N Engl J Med
.
2012
;
366
(
12
):
1079
-
1089
.
3.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
4.
Döhner
H
,
Estey
E
,
Grimwade
D
, et al
.
Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
.
Blood
.
2017
;
129
(
4
):
424
-
447
.
5.
Khoury
JD
,
Solary
E
,
Abla
O
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and Histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
6.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al
.
International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
7.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al
.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
.
Nat Med
.
2020
;
26
(
10
):
1549
-
1556
.
8.
Rodriguez-Meira
A
,
Norfo
R
,
Wen
S
, et al
.
Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution
.
Nat Genet
.
2023
;
55
(
9
):
1531
-
1541
.
9.
Iacobucci
I
,
Wen
J
,
Meggendorfer
M
, et al
.
Genomic subtyping and therapeutic targeting of acute erythroleukemia
.
Nat Genet
.
2019
;
51
(
4
):
694
-
704
.
10.
Takeda
J
,
Yoshida
K
,
Nakagawa
MM
, et al
.
Amplified EPOR/JAK2 genes define a unique subtype of acute erythroid leukemia
.
Blood Cancer Discov
.
2022
;
3
(
5
):
410
-
427
.
11.
Donehower
LA
,
Harvey
M
,
Slagle
BL
, et al
.
Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours
.
Nature
.
1992
;
356
(
6366
):
215
-
221
.
12.
Loizou
E
,
Banito
A
,
Livshits
G
, et al
.
A gain-of-function p53-mutant oncogene promotes cell fate plasticity and myeloid leukemia through the pluripotency factor FOXH1
.
Cancer Discov
.
2019
;
9
(
7
):
962
-
979
.
13.
Taylor
AM
,
Shih
J
,
Ha
G
, et al
.
Genomic and functional approaches to understanding cancer aneuploidy
.
Cancer Cell
.
2018
;
33
(
4
):
676
-
689.e3
.
14.
Shi
G
,
Weh
HJ
,
Martensen
S
,
Seeger
D
,
Hossfeld
DK
.
3p21 is a recurrent treatment-related breakpoint in myelodysplastic syndrome and acute myeloid leukemia
.
Cytogenet Cell Genet
.
1996
;
74
(
4
):
295
-
299
.
15.
Johansson
B
,
Billström
R
,
Kristoffersson
U
, et al
.
Deletion of chromosome arm 3p in hematologic malignancies
.
Leukemia
.
1997
;
11
(
8
):
1207
-
1213
.
16.
Sahtoe
DD
,
van Dijk
WJ
,
Ekkebus
R
,
Ovaa
H
,
Sixma
TK
.
BAP1/ASXL1 recruitment and activation for H2A deubiquitination
.
Nat Commun
.
2016
;
7
:
10292
.
17.
Scheuermann
JC
,
de Ayala Alonso
AG
,
Oktaba
K
, et al
.
Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB
.
Nature
.
2010
;
465
(
7295
):
243
-
247
.
18.
Ismail
IH
,
Davidson
R
,
Gagné
JP
,
Xu
ZZ
,
Poirier
GG
,
Hendzel
MJ
.
Germline mutations in BAP1 impair its function in DNA double-strand break repair
.
Cancer Res
.
2014
;
74
(
16
):
4282
-
4294
.
19.
Yu
H
,
Pak
H
,
Hammond-Martel
I
, et al
.
Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
1
):
285
-
290
.
20.
Perkail
S
,
Andricovich
J
,
Kai
Y
,
Tzatsos
A
.
BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice
.
Nat Commun
.
2020
;
11
(
1
):
3018
.
21.
Marino
S
,
Vooijs
M
,
van Der Gulden
H
,
Jonkers
J
,
Berns
A
.
Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum
.
Genes Dev
.
2000
;
14
(
8
):
994
-
1004
.
22.
Stadtfeld
M
,
Graf
T
.
Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing
.
Development
.
2005
;
132
(
1
):
203
-
213
.
23.
Kühn
R
,
Schwenk
F
,
Aguet
M
,
Rajewsky
K
.
Inducible gene targeting in mice
.
Science
.
1995
;
269
(
5229
):
1427
-
1429
.
24.
Kogan
SC
,
Ward
JM
,
Anver
MR
, et al
.
Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice
.
Blood
.
2002
;
100
(
1
):
238
-
245
.
25.
Vardiman
JW
,
Thiele
J
,
Arber
DA
, et al
.
The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes
.
Blood
.
2009
;
114
(
5
):
937
-
951
.
26.
Andricovich
J
,
Kai
Y
,
Peng
W
,
Foudi
A
,
Tzatsos
A
.
Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis
.
J Clin Invest
.
2016
;
126
(
3
):
905
-
920
.
27.
Li
Z
,
Herold
T
,
He
C
, et al
.
Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study
.
J Clin Oncol
.
2013
;
31
(
9
):
1172
-
1181
.
28.
Tomasson
MH
,
Xiang
Z
,
Walgren
R
, et al
.
Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia
.
Blood
.
2008
;
111
(
9
):
4797
-
4808
.
29.
Subramanian
S
,
Thoms
JAI
,
Huang
Y
, et al
.
Genome-wide transcription factor-binding maps reveal cell-specific changes in the regulatory architecture of human HSPCs
.
Blood
.
2023
;
142
(
17
):
1448
-
1462
.
30.
Replogle
JM
,
Saunders
RA
,
Pogson
AN
, et al
.
Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq
.
Cell
.
2022
;
185
(
14
):
2559
-
2575.e28
.
31.
Obermayer
AN
,
Chang
D
,
Nobles
G
, et al
.
PATH-SURVEYOR: pathway level survival enquiry for immuno-oncology and drug repurposing
.
BMC Bioinformatics
.
2023
;
24
(
1
):
266
.
32.
Zhang
X
,
Song
B
,
Carlino
MJ
, et al
.
An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors
.
Nat Immunol
.
2024
;
25
(
4
):
703
-
715
.
33.
Komatsu
N
,
Kirito
K
,
Shimizu
R
, et al
.
In vitro development of erythroid and megakaryocytic cells from a UT-7 subline, UT-7/GM
.
Blood
.
1997
;
89
(
11
):
4021
-
4033
.
34.
Komatsu
N
,
Yamamoto
M
,
Fujita
H
, et al
.
Establishment and characterization of an erythropoietin-dependent subline, UT-7/Epo, derived from human leukemia cell line, UT-7
.
Blood
.
1993
;
82
(
2
):
456
-
464
.
35.
Bottomly
D
,
Long
N
,
Schultz
AR
, et al
.
Integrative analysis of drug response and clinical outcome in acute myeloid leukemia
.
Cancer Cell
.
2022
;
40
(
8
):
850
-
864.e9
.
36.
Eide
CA
,
Kurtz
SE
,
Kaempf
A
, et al
.
Clinical correlates of venetoclax-based combination sensitivities to augment acute myeloid leukemia therapy
.
Blood Cancer Discov
.
2023
;
4
(
6
):
452
-
467
.
37.
Bernard
E
,
Tuechler
H
,
Greenberg
PL
, et al
.
Molecular International Prognostic Scoring System for myelodysplastic syndromes
.
NEJM Evid
.
2022
;
1
(
7
):
EVIDoa2200008
.
38.
Kiel
MJ
,
Yilmaz
OH
,
Iwashita
T
,
Yilmaz
OH
,
Terhorst
C
,
Morrison
SJ
.
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
.
Cell
.
2005
;
121
(
7
):
1109
-
1121
.
39.
Oguro
H
,
Ding
L
,
Morrison
SJ
.
SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors
.
Cell Stem Cell
.
2013
;
13
(
1
):
102
-
116
.
40.
Pietras
EM
,
Reynaud
D
,
Kang
YA
, et al
.
Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions
.
Cell Stem Cell
.
2015
;
17
(
1
):
35
-
46
.
41.
Arinobu
Y
,
Mizuno
S
,
Chong
Y
, et al
.
Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages
.
Cell Stem Cell
.
2007
;
1
(
4
):
416
-
427
.
42.
Akashi
K
,
Traver
D
,
Miyamoto
T
,
Weissman
IL
.
A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
.
Nature
.
2000
;
404
(
6774
):
193
-
197
.
43.
Pronk
CJ
,
Rossi
DJ
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
44.
Boulais
PE
,
Mizoguchi
T
,
Zimmerman
S
, et al
.
The majority of CD45 Ter119 CD31 bone marrow cell fraction is of hematopoietic origin and contains erythroid and lymphoid progenitors
.
Immunity
.
2018
;
49
(
4
):
627
-
639.e6
.
45.
Liu
J
,
Zhang
J
,
Ginzburg
Y
, et al
.
Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis
.
Blood
.
2013
;
121
(
8
):
e43
-
e49
.
46.
Wesely
J
,
Kotini
AG
,
Izzo
F
, et al
.
Acute myeloid leukemia iPSCs reveal a role for RUNX1 in the maintenance of human leukemia stem cells
.
Cell Rep
.
2020
;
31
(
9
):
107688
.
47.
Park
SM
,
Cho
H
,
Thornton
AM
, et al
.
IKZF2 drives leukemia stem cell self-renewal and inhibits myeloid differentiation
.
Cell Stem Cell
.
2019
;
24
(
1
):
153
-
165.e7
.
48.
Iacobucci
I
,
Qu
C
,
Varotto
E
, et al
.
Modeling and targeting of erythroleukemia by hematopoietic genome editing
.
Blood
.
2021
;
137
(
12
):
1628
-
1640
.
49.
Paul
F
,
Arkin
Y
,
Giladi
A
, et al
.
Transcriptional heterogeneity and lineage commitment in myeloid progenitors
.
Cell
.
2015
;
163
(
7
):
1663
-
1677
.
50.
Kamimoto
K
,
Stringa
B
,
Hoffmann
CM
,
Jindal
K
,
Solnica-Krezel
L
,
Morris
SA
.
Dissecting cell identity via network inference and in silico gene perturbation
.
Nature
.
2023
;
614
(
7949
):
742
-
751
.
51.
Iorio
F
,
Knijnenburg
TA
,
Vis
DJ
, et al
.
A landscape of pharmacogenomic interactions in cancer
.
Cell
.
2016
;
166
(
3
):
740
-
754
.
52.
Behan
FM
,
Iorio
F
,
Picco
G
, et al
.
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens
.
Nature
.
2019
;
568
(
7753
):
511
-
516
.
53.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium
.
Pan-cancer analysis of whole genomes
.
Nature
.
2020
;
578
(
7793
):
82
-
93
.
54.
Tao
ZF
,
Hasvold
L
,
Wang
L
, et al
.
Discovery of a potent and selective BCL-XL inhibitor with in vivo activity
.
ACS Med Chem Lett
.
2014
;
5
(
10
):
1088
-
1093
.
55.
Korsunsky
I
,
Millard
N
,
Fan
J
, et al
.
Fast, sensitive and accurate integration of single-cell data with Harmony
.
Nat Methods
.
2019
;
16
(
12
):
1289
-
1296
.
56.
Ianevski
A
,
Giri
AK
,
Aittokallio
T
.
Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data
.
Nat Commun
.
2022
;
13
(
1
):
1246
.
57.
Trapnell
C
,
Cacchiarelli
D
,
Grimsby
J
, et al
.
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
.
Nat Biotechnol
.
2014
;
32
(
4
):
381
-
386
.
58.
Collins
A
,
Mitchell
CA
,
Passegué
E
.
Inflammatory signaling regulates hematopoietic stem and progenitor cell development and homeostasis
.
J Exp Med
.
2021
;
218
(
7
):
e20201545
.
59.
Espín-Palazón
R
,
Stachura
DL
,
Campbell
CA
, et al
.
Proinflammatory signaling regulates hematopoietic stem cell emergence
.
Cell
.
2014
;
159
(
5
):
1070
-
1085
.
60.
Conway
E
,
Rossi
F
,
Fernandez-Perez
D
, et al
.
BAP1 enhances Polycomb repression by counteracting widespread H2AK119ub1 deposition and chromatin condensation
.
Mol Cell
.
2021
;
81
(
17
):
3526
-
3541.e8
.
61.
Fursova
NA
,
Turberfield
AH
,
Blackledge
NP
, et al
.
BAP1 constrains pervasive H2AK119ub1 to control the transcriptional potential of the genome
.
Genes Dev
.
2021
;
35
(
9-10
):
749
-
770
.
62.
Dey
A
,
Seshasayee
D
,
Noubade
R
, et al
.
Loss of the tumor suppressor BAP1 causes myeloid transformation
.
Science
.
2012
;
337
(
6101
):
1541
-
1546
.
63.
Gulati
GS
,
Sikandar
SS
,
Wesche
DJ
, et al
.
Single-cell transcriptional diversity is a hallmark of developmental potential
.
Science
.
2020
;
367
(
6476
):
405
-
411
.
64.
Teschendorff
AE
,
Enver
T
.
Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome
.
Nat Commun
.
2017
;
8
:
15599
.
65.
Nale
V
,
Chiodi
A
,
Di Nanni
N
, et al
.
scMuffin: an R package to disentangle solid tumor heterogeneity by single-cell gene expression analysis
.
BMC Bioinformatics
.
2023
;
24
(
1
):
445
.
66.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
67.
Zhao
J
,
Lan
J
,
Wang
M
, et al
.
H2AK119ub1 differentially fine-tunes gene expression by modulating canonical PRC1- and H1-dependent chromatin compaction
.
Mol Cell
.
2024
;
84
(
7
):
1191
-
1205.e7
.
68.
Campagne
A
,
Lee
MK
,
Zielinski
D
, et al
.
BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation
.
Nat Commun
.
2019
;
10
(
1
):
348
.
69.
Wang
L
,
Zhao
Z
,
Ozark
PA
, et al
.
Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy
.
Nat Med
.
2018
;
24
(
6
):
758
-
769
.
70.
Zhang
Y
,
Xie
G
,
Lee
JE
, et al
.
ASXLs binding to the PHD2/3 fingers of MLL4 provides a mechanism for the recruitment of BAP1 to active enhancers
.
Nat Commun
.
2024
;
15
(
1
):
4883
.
71.
Wang
J
,
Li
Z
,
He
Y
, et al
.
Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice
.
Blood
.
2014
;
123
(
4
):
541
-
553
.
72.
Nagase
R
,
Inoue
D
,
Pastore
A
, et al
.
Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation
.
J Exp Med
.
2018
;
215
(
6
):
1729
-
1747
.
73.
Yang
H
,
Kurtenbach
S
,
Guo
Y
, et al
.
Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies
.
Blood
.
2018
;
131
(
3
):
328
-
341
.
74.
Asada
S
,
Goyama
S
,
Inoue
D
, et al
.
Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis
.
Nat Commun
.
2018
;
9
(
1
):
2733
.
75.
Balasubramani
A
,
Larjo
A
,
Bassein
JA
, et al
.
Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex
.
Nat Commun
.
2015
;
6
:
7307
.
76.
Köhnke
T
,
Nuno
KA
,
Alder
CC
, et al
.
Human ASXL1-mutant hematopoiesis is driven by a truncated protein associated with aberrant deubiquitination of H2AK119
.
Blood Cancer Discov
.
2024
;
5
(
3
):
202
-
223
.
77.
Wang
L
,
Birch
NW
,
Zhao
Z
, et al
.
Epigenetic targeted therapy of stabilized BAP1 in ASXL1 gain-of-function mutated leukemia
.
Nat Cancer
.
2021
;
2
(
5
):
515
-
526
.
78.
Lasry
A
,
Nadorp
B
,
Fornerod
M
, et al
.
An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia
.
Nat Cancer
.
2023
;
4
(
1
):
27
-
42
.
79.
Gregory
T
,
Yu
C
,
Ma
A
,
Orkin
SH
,
Blobel
GA
,
Weiss
MJ
.
GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression
.
Blood
.
1999
;
94
(
1
):
87
-
96
.
80.
Kuusanmäki
H
,
Dufva
O
,
Vähä-Koskela
M
, et al
.
Erythroid/megakaryocytic differentiation confers BCL-XL dependency and venetoclax resistance in acute myeloid leukemia
.
Blood
.
2023
;
141
(
13
):
1610
-
1625
.
81.
LaFave
LM
,
Béguelin
W
,
Koche
R
, et al
.
Loss of BAP1 function leads to EZH2-dependent transformation
.
Nat Med
.
2015
;
21
(
11
):
1344
-
1349
.
82.
Abdel-Wahab
O
,
Adli
M
,
LaFave
LM
, et al
.
ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression
.
Cancer Cell
.
2012
;
22
(
2
):
180
-
193
.
You do not currently have access to this content.
Sign in via your Institution