Abstract

Follicular lymphoma (FL) represents a heterogeneous group of B-cell neoplasms with distinct genetic, epigenetic, microenvironmental, and clinical features. It is the most prevalent indolent non-Hodgkin lymphoma, characterized by a relapsing course and risk of transformation to aggressive diffuse large B-cell lymphoma. Recent advances in high-throughput sequencing, spatial transcriptomics, and imaging technologies uncovered genetic, epigenetic, and immunogenetic features underpinning FL, offering insights into its biology and potential therapeutic vulnerabilities. Although FL is primarily driven by the hallmark t(14;18) translocation involving BCL2, its pathogenesis requires additional oncogenic mutations, particularly in genes regulating chromatin and histone modifications. These early genetic and epigenetic alterations promote the persistence and evolution of cancer precursor cells, setting the stage for lymphomagenesis. The tumor microenvironment is also crucial in FL progression and patient prognosis, with T cells, stromal cells, and macrophages playing pivotal roles in facilitating tumor immune escape. Targeted therapies, including B-cell lymphoma 2 (BCL2) inhibitors, epigenetic modulators, and immunotherapies, have emerged from this deeper understanding of FL biology. Achieving a cure for FL will require targeted therapies that selectively eliminate cancer precursor cells with minimal impact on normal cells, thus preventing relapse and avoiding harmful side effects. Eradicating minimal residual disease should be a primary objective rather than waiting for clinical relapse. Future research must prioritize the development of accurate experimental models, the elucidation of FL precursors, and a deeper understanding of its heterogeneity, dependencies, progression, and mechanisms driving transformation. Implementing targeted therapies at FL early stages, instead of the current “watch and wait” approach, will be essential to improve patient outcomes.

1.
Morton
LM
,
Wang
SS
,
Devesa
SS
,
Hartge
P
,
Weisenburger
DD
,
Linet
MS
.
Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001
.
Blood
.
2006
;
107
(
1
):
265
-
276
.
2.
Roulland
S
,
Navarro
J-M
,
Grenot
P
, et al
.
Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis
.
J Exp Med
.
2006
;
203
(
11
):
2425
-
2431
.
3.
Morin
RD
,
Mendez-Lago
M
,
Mungall
AJ
, et al
.
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma
.
Nature
.
2011
;
476
(
7360
):
298
-
303
.
4.
Pasqualucci
L
,
Dominguez-Sola
D
,
Chiarenza
A
, et al
.
Inactivating mutations of acetyltransferase genes in B-cell lymphoma
.
Nature
.
2011
;
471
(
7337
):
189
-
195
.
5.
Li
H
,
Kaminski
MS
,
Li
Y
, et al
.
Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma
.
Blood
.
2014
;
123
(
10
):
1487
-
1498
.
6.
Green
MR
,
Gentles
AJ
,
Nair
RV
, et al
.
Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma
.
Blood
.
2013
;
121
(
9
):
1604
-
1611
.
7.
Sungalee
S
,
Mamessier
E
,
Morgado
E
, et al
.
Germinal center reentries of BCL2-overexpressing B cells drive follicular lymphoma progression
.
J Clin Invest
.
2014
;
124
(
12
):
5337
-
5351
.
8.
Okosun
J
,
Bödör
C
,
Wang
J
, et al
.
Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma
.
Nat Genet
.
2014
;
46
(
2
):
176
-
181
.
9.
Green
MR
,
Kihira
S
,
Liu
CL
, et al
.
Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
10
):
E1116
-
E1125
.
10.
Kridel
R
,
Chan
FC
,
Mottok
A
, et al
.
Histological transformation and progression in follicular lymphoma: a clonal evolution study
.
PLoS Med
.
2016
;
13
(
12
):
e1002197
.
11.
Zhang
J
,
Dominguez-Sola
D
,
Hussein
S
, et al
.
Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis
.
Nat Med
.
2015
;
21
(
10
):
1190
-
1198
.
12.
Ortega-Molina
A
,
Boss
IW
,
Canela
A
, et al
.
The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development
.
Nat Med
.
2015
;
21
(
10
):
1199
-
1208
.
13.
Brisou
G
,
Nadel
B
,
Roulland
S
.
The premalignant ancestor cell of t(14;18)+ lymphoma
.
Hemasphere
.
2021
;
5
(
6
):
e579
.
14.
Horton
SJ
,
Giotopoulos
G
,
Yun
H
, et al
.
Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors
.
Nat Cell Biol
.
2017
;
19
(
9
):
1093
-
1104
.
15.
Schroers-Martin
JG
,
Soo
J
,
Brisou
G
, et al
.
Tracing founder mutations in circulating and tissue-resident follicular lymphoma precursors
.
Cancer Discov
.
2023
;
13
(
6
):
1310
-
1323
.
16.
Zhang
J
,
Vlasevska
S
,
Wells
VA
, et al
.
The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma
.
Cancer Discov
.
2017
;
7
(
3
):
322
-
337
.
17.
Jiang
Y
,
Ortega-Molina
A
,
Geng
H
, et al
.
CREBBP inactivation promotes the development of HDAC3-dependent lymphomas
.
Cancer Discov
.
2017
;
7
(
1
):
38
-
53
.
18.
Valls
E
,
Lobry
C
,
Geng
H
, et al
.
BCL6 antagonizes NOTCH2 to maintain survival of human follicular lymphoma cells
.
Cancer Discov
.
2017
;
7
(
5
):
506
-
521
.
19.
Li
J
,
Chin
CR
,
Ying
H-Y
, et al
.
Loss of CREBBP and KMT2D cooperate to accelerate lymphomagenesis and shape the lymphoma immune microenvironment
.
Nat Commun
.
2024
;
15
(
1
):
2879
.
20.
Béguelin
W
,
Popovic
R
,
Teater
M
, et al
.
EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation
.
Cancer Cell
.
2013
;
23
(
5
):
677
-
692
.
21.
Béguelin
W
,
Teater
M
,
Gearhart
MD
, et al
.
EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis
.
Cancer Cell
.
2016
;
30
(
2
):
197
-
213
.
22.
Béguelin
W
,
Teater
M
,
Meydan
C
, et al
.
Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response
.
Cancer Cell
.
2020
;
37
(
5
):
655
-
673.e11
.
23.
Cheung
KJJ
,
Johnson
NA
,
Affleck
JG
, et al
.
Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis
.
Cancer Res
.
2010
;
70
(
22
):
9166
-
9174
.
24.
Boice
M
,
Salloum
D
,
Mourcin
F
, et al
.
Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells
.
Cell
.
2016
;
167
(
2
):
405
-
418.e13
.
25.
Barisic
D
,
Chin
CR
,
Meydan
C
, et al
.
ARID1A orchestrates SWI/SNF-mediated sequential binding of transcription factors with ARID1A loss driving pre-memory B cell fate and lymphomagenesis
.
Cancer Cell
.
2024
;
42
(
4
):
720
-
722
.
26.
Yusufova
N
,
Kloetgen
A
,
Teater
M
, et al
.
Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture
.
Nature
.
2021
;
589
(
7841
):
299
-
305
.
27.
Los-de Vries
GT
,
Stevens
WBC
,
van Dijk
E
, et al
.
Genomic and microenvironmental landscape of stage I follicular lymphoma, compared with stage III/IV
.
Blood Adv
.
2022
;
6
(
18
):
5482
-
5493
.
28.
Kretzmer
H
,
Bernhart
SH
,
Wang
W
, et al
.
DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control
.
Nat Genet
.
2015
;
47
(
11
):
1316
-
1325
.
29.
Yang
S-M
,
Kim
BJ
,
Norwood Toro
L
,
Skoultchi
AI
.
H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
5
):
1708
-
1713
.
30.
Bennett
LB
,
Schnabel
JL
,
Kelchen
JM
, et al
.
DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma
.
Genes Chromosomes Cancer
.
2009
;
48
(
9
):
828
-
841
.
31.
Alhejaily
A
,
Day
AG
,
Feilotter
HE
,
Baetz
T
,
Lebrun
DP
.
Inactivation of the CDKN2A tumor-suppressor gene by deletion or methylation is common at diagnosis in follicular lymphoma and associated with poor clinical outcome
.
Clin Cancer Res
.
2014
;
20
(
6
):
1676
-
1686
.
32.
De
S
,
Shaknovich
R
,
Riester
M
, et al
.
Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity
.
PLoS Genet
.
2013
;
9
(
1
):
e1003137
.
33.
Dave
SS
,
Wright
G
,
Tan
B
, et al
.
Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells
.
N Engl J Med
.
2004
;
351
(
21
):
2159
-
2169
.
34.
Sarkozy
C
,
Wu
S
,
Takata
K
, et al
.
Integrated single cell analysis reveals co-evolution of malignant B cells and tumor micro-environment in transformed follicular lymphoma [published correction appears Cancer Cell. 42(9):1630]
.
Cancer Cell
.
2024
;
42
(
6
):
1003
-
1017.e6
.
35.
Abe
Y
,
Sakata-Yanagimoto
M
,
Fujisawa
M
, et al
.
A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling
.
Nat Cell Biol
.
2022
;
24
(
4
):
565
-
578
.
36.
Han
G
,
Deng
Q
,
Marques-Piubelli
ML
, et al
.
Follicular lymphoma microenvironment characteristics associated with tumor cell mutations and MHC class II expression
.
Blood Cancer Discov
.
2022
;
3
(
5
):
428
-
443
.
37.
Radtke
AJ
,
Postovalova
E
,
Varlamova
A
, et al
.
Multi-omic profiling of follicular lymphoma reveals changes in tissue architecture and enhanced stromal remodeling in high-risk patients
.
Cancer Cell
.
2024
;
42
(
3
):
444
-
463.e10
.
38.
Roider
T
,
Baertsch
MA
,
Fitzgerald
D
, et al
.
Multimodal and spatially resolved profiling identifies distinct patterns of T cell infiltration in nodal B cell lymphoma entities
.
Nat Cell Biol
.
2024
;
26
(
3
):
478
-
489
.
39.
Kotlov
N
,
Bagaev
A
,
Revuelta
M V
, et al
.
Clinical and biological subtypes of B-cell lymphoma revealed by microenvironmental signatures
.
Cancer Discov
.
2021
;
11
(
6
):
1468
-
1489
.
40.
Krull
JE
,
Wenzl
K
,
Hopper
MA
, et al
.
Follicular lymphoma B cells exhibit heterogeneous transcriptional states with associated somatic alterations and tumor microenvironments
.
Cell Rep Med
.
2024
;
5
(
3
):
101443
.
41.
Townsend
W
,
Pasikowska
M
,
Yallop
D
, et al
.
The architecture of neoplastic follicles in follicular lymphoma; analysis of the relationship between the tumor and follicular helper T cells
.
Haematologica
.
2020
;
105
(
6
):
1593
-
1603
.
42.
Amé-Thomas
P
,
Le Priol
J
,
Yssel
H
, et al
.
Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells
.
Leukemia
.
2012
;
26
(
5
):
1053
-
1063
.
43.
Rawal
S
,
Chu
F
,
Zhang
M
, et al
.
Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment
.
J Immunol
.
2013
;
190
(
12
):
6681
-
6693
.
44.
Yang
Z-Z
,
Novak
AJ
,
Stenson
MJ
,
Witzig
TE
,
Ansell
SM
.
Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma
.
Blood
.
2006
;
107
(
9
):
3639
-
3646
.
45.
Farinha
P
,
Al-Tourah
A
,
Gill
K
,
Klasa
R
,
Connors
JM
,
Gascoyne
RD
.
The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation
.
Blood
.
2010
;
115
(
2
):
289
-
295
.
46.
Chung
Y
,
Tanaka
S
,
Chu
F
, et al
.
Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions
.
Nat Med
.
2011
;
17
(
8
):
983
-
988
.
47.
Laidlaw
BJ
,
Lu
Y
,
Amezquita
RA
, et al
.
Interleukin-10 from CD4+ follicular regulatory T cells promotes the germinal center response
.
Sci Immunol
.
2017
;
2
(
16
):
eaan4767
. 10.
48.
Rodriguez
S
,
Alizadeh
M
,
Lamaison
C
, et al
.
Follicular lymphoma regulatory T-cell origin and function
.
Front Immunol
.
2024
;
15
:
1391404
.
49.
El Daker
S
,
Baik
J
,
Dogan
A
,
Zhu
M
,
Roshal
M
,
Galera
PK
.
High-resolution single cell T-cell phenotyping of B-cell lineage lymphomas reveals unique immune signatures and potential targetable vulnerabilities [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
3570
-
3572
.
50.
Yang
Z-Z
,
Kim
HJ
,
Villasboas
JC
, et al
.
Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma
.
Oncotarget
.
2017
;
8
(
37
):
61425
-
61439
.
51.
Yang
ZZ
,
Kim
HJ
,
Wu
H
, et al
.
TIGIT expression is associated with T-cell suppression and exhaustion and predicts clinical outcome and anti–PD-1 response in follicular lymphoma
.
Clin Cancer Res
.
2020
;
26
(
19
):
5217
-
5231
.
52.
Gravelle
P
,
Do
C
,
Franchet
C
, et al
.
Impaired functional responses in follicular lymphoma CD8+ TIM-3+ T lymphocytes following TCR engagement
.
Oncoimmunology
.
2016
;
5
(
10
):
e1224044
.
53.
Josefsson
SE
,
Huse
K
,
Kolstad
A
, et al
.
T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling
.
Clin Cancer Res
.
2018
;
24
(
4
):
870
-
881
.
54.
Yang
ZZ
,
Grote
DM
,
Ziesmer
SC
, et al
.
IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma
.
J Clin Invest
.
2012
;
122
(
4
):
1271
-
1282
.
55.
Mourcin
F
,
Verdière
L
,
Roulois
D
, et al
.
Follicular lymphoma triggers phenotypic and functional remodeling of the human lymphoid stromal cell landscape [published correction appears in Immunity 54(8):1901]
.
Immunity
.
2021
;
54
(
8
):
1788
-
1806.e7
.
56.
Hollander
N
,
Haimovich
J
.
Altered N-linked glycosylation in follicular lymphoma and chronic lymphocytic leukemia: involvement in pathogenesis and potential therapeutic targeting
.
Front Immunol
.
2017
;
8
:
912
.
57.
Pandey
S
,
Mourcin
F
,
Marchand
T
, et al
.
IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma
.
Blood
.
2017
;
129
(
18
):
2507
-
2518
.
58.
Guilloton
F
,
Caron
G
,
Ménard
C
, et al
.
Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes
.
Blood
.
2012
;
119
(
11
):
2556
-
2567
.
59.
Kumar
V
,
Patel
S
,
Tcyganov
E
,
Gabrilovich
DI
.
The nature of myeloid-derived suppressor cells in the tumor microenvironment
.
Trends Immunol
.
2016
;
37
(
3
):
208
-
220
.
60.
Laurent
C
,
Dietrich
S
,
Tarte
K
.
Cell cross talk within the lymphoma tumor microenvironment: follicular lymphoma as a paradigm
.
Blood
.
2024
;
143
(
12
):
1080
-
1090
.
61.
Amin
R
,
Mourcin
F
,
Uhel
F
, et al
.
DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma
.
Blood
.
2015
;
126
(
16
):
1911
-
1920
.
62.
Linley
A
,
Krysov
S
,
Ponzoni
M
,
Johnson
PW
,
Packham
G
,
Stevenson
FK
.
Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells
.
Blood
.
2015
;
126
(
16
):
1902
-
1910
.
63.
Epron
G
,
Ame-Thomas
P
,
Le Priol
J
, et al
.
Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling
.
Leukemia
.
2012
;
26
(
1
):
139
-
148
.
64.
Farinha
P
,
Masoudi
H
,
Skinnider
BF
, et al
.
Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL)
.
Blood
.
2005
;
106
(
6
):
2169
-
2174
.
65.
Canioni
D
,
Salles
G
,
Mounier
N
, et al
.
High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial
.
J Clin Oncol
.
2008
;
26
(
3
):
440
-
446
.
66.
Kridel
R
,
Xerri
L
,
Gelas-Dore
B
, et al
.
The prognostic impact of CD163-positive macrophages in follicular lymphoma: a study from the BC Cancer Agency and the Lymphoma Study Association
.
Clin Cancer Res
.
2015
;
21
(
15
):
3428
-
3435
.
67.
Leidi
M
,
Gotti
E
,
Bologna
L
, et al
.
M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro
.
J Immunol
.
2009
;
182
(
7
):
4415
-
4422
.
68.
Jaiswal
S
,
Jamieson
CHM
,
Pang
WW
, et al
.
CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis
.
Cell
.
2009
;
138
(
2
):
271
-
285
.
69.
Roulland
S
,
Lebailly
P
,
Lecluse
Y
,
Heutte
N
,
Nadel
B
,
Gauduchon
P
.
Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals
.
Leukemia
.
2006
;
20
(
1
):
158
-
162
.
70.
Link
BK
,
Maurer
MJ
,
Nowakowski
GS
, et al
.
Rates and outcomes of follicular lymphoma transformation in the immunochemotherapy era: a report from the University of Iowa/MayoClinic Specialized Program of Research Excellence Molecular Epidemiology Resource
.
J Clin Oncol
.
2013
;
31
(
26
):
3272
-
3278
.
71.
Kumar
E
,
Pickard
L
,
Okosun
J
.
Pathogenesis of follicular lymphoma: genetics to the microenvironment to clinical translation
.
Br J Haematol
.
2021
;
194
(
5
):
810
-
821
.
72.
Makker
J
,
Wotherspoon
A
,
Tzioni
M
, et al
.
Relapses in early-stage follicular lymphoma frequently develop via a divergent evolution from their clonally related precursor cells
.
J Pathol
.
2024
;
262
(
3
):
289
-
295
.
73.
Vlasevska
S
,
Garcia-Ibanez
L
,
Duval
R
, et al
.
KMT2D acetylation by CREBBP reveals a cooperative functional interaction at enhancers in normal and malignant germinal center B cells
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
11
):
e2218330120
.
74.
Bouska
A
,
McKeithan
TW
,
Deffenbacher
KE
, et al
.
Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma
.
Blood
.
2014
;
123
(
11
):
1681
-
1690
.
75.
Kridel
R
,
Mottok
A
,
Farinha
P
, et al
.
Cell of origin of transformed follicular lymphoma
.
Blood
.
2015
;
126
(
18
):
2118
-
2127
.
76.
Nadeu
F
,
Royo
R
,
Massoni-Badosa
R
, et al
.
Detection of early seeding of Richter transformation in chronic lymphocytic leukemia
.
Nat Med
.
2022
;
28
(
8
):
1662
-
1671
.
77.
Carreras
J
.
The pathobiology of follicular lymphoma
.
J Clin Exp Hematop
.
2023
;
63
(
3
):
152
-
163
.
78.
Blaker
YN
,
Spetalen
S
,
Brodtkorb
M
, et al
.
The tumour microenvironment influences survival and time to transformation in follicular lymphoma in the rituximab era
.
Br J Haematol
.
2016
;
175
(
1
):
102
-
114
.
79.
Milpied
P
,
Cervera-Marzal
I
,
Mollichella
ML
, et al
.
Human germinal center transcriptional programs are de-synchronized in B cell lymphoma
.
Nat Immunol
.
2018
;
19
(
9
):
1013
-
1024
.
80.
Wang
X
,
Nissen
M
,
Gracias
D
, et al
.
Single-cell profiling reveals a memory B cell-like subtype of follicular lymphoma with increased transformation risk
.
Nat Commun
.
2022
;
13
(
1
):
6772
.
81.
Davids
MS
,
Roberts
AW
,
Seymour
JF
, et al
.
Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma
.
J Clin Oncol
.
2017
;
35
(
8
):
826
-
833
.
82.
Zinzani
PL
,
Flinn
IW
,
Yuen
SLS
, et al
.
Venetoclax-rituximab with or without bendamustine vs bendamustine-rituximab in relapsed/refractory follicular lymphoma
.
Blood
.
2020
;
136
(
23
):
2628
-
2637
.
83.
Stathis
A
,
Mey
U
,
Schär
S
, et al
.
SAKK 35/15: a phase 1 trial of obinutuzumab in combination with venetoclax in patients with previously untreated follicular lymphoma
.
Blood Adv
.
2022
;
6
(
13
):
3911
-
3920
.
84.
Serrat
N
,
Guerrero-Hernández
M
,
Matas-Céspedes
A
, et al
.
PI3Kd inhibition reshapes follicular lymphoma–immune microenvironment cross talk and unleashes the activity of venetoclax
.
Blood Adv
.
2020
;
4
(
17
):
4217
-
4231
.
85.
Portelinha
A
,
Wang
S
,
Parsa
S
, et al
.
SETD1B mutations confer apoptosis resistance and BCL2 independence in B cell lymphoma
.
J Exp Med
.
2024
;
221
(
10
):
e20231143
.
86.
Lasater
EA
,
Amin
DN
,
Bannerji
R
, et al
.
Targeting MCL-1 and BCL-2 with polatuzumab vedotin and venetoclax overcomes treatment resistance in R/R non-Hodgkin lymphoma: results from preclinical models and a phase Ib study
.
Am J Hematol
.
2023
;
98
(
3
):
449
-
463
.
87.
Yuen
S
,
Phillips
TJ
,
Bannerji
R
, et al
.
Polatuzumab vedotin, venetoclax, and an anti-CD20 monoclonal antibody in relapsed/refractory B-cell non-Hodgkin lymphoma
.
Am J Hematol
.
2024
;
99
(
7
):
1281
-
1289
.
88.
Dong
Z
,
Song
JY
,
Thieme
E
, et al
.
Generation of a humanized afucosylated BAFF-R antibody with broad activity against human B-cell malignancies
.
Blood Adv
.
2023
;
7
(
6
):
918
-
932
.
89.
Zhang
K
,
Roy
NK
,
Vicioso
Y
, et al
.
BAFF receptor antibody for mantle cell lymphoma therapy
.
Oncoimmunology
.
2021
;
10
(
1
):
1893501
.
90.
Decombis
S
,
Papin
A
,
Bellanger
C
, et al
.
The IL32/BAFF axis supports prosurvival dialogs in the lymphoma ecosystem and is disrupted by NIK inhibition
.
Haematologica
.
2022
;
107
(
12
):
2905
-
2917
.
91.
Chao
MP
,
Alizadeh
AA
,
Tang
C
, et al
.
Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma
.
Cell
.
2010
;
142
(
5
):
699
-
713
.
92.
Advani
R
,
Flinn
I
,
Popplewell
L
, et al
.
CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma
.
N Engl J Med
.
2018
;
379
(
18
):
1711
-
1721
.
93.
Biedermann
A
,
Patra-Kneuer
M
,
Mougiakakos
D
, et al
.
Blockade of the CD47/SIRPα checkpoint axis potentiates the macrophage-mediated antitumor efficacy of tafasitamab
.
Haematologica
.
2024
;
109
(
12
):
3928
-
3940
.
94.
Dacek
MM
,
Kurtz
KG
,
Wallisch
P
, et al
.
Potentiating antibody-dependent killing of cancers with CAR T cells secreting CD47-SIRPα checkpoint blocker
.
Blood
.
2023
;
141
(
16
):
2003
-
2015
.
95.
Yamada-Hunter
SA
,
Theruvath
J
,
McIntosh
BJ
, et al
.
Engineered CD47 protects T cells for enhanced antitumour immunity
.
Nature
.
2024
;
630
(
8016
):
457
-
465
.
96.
Valero
JG
,
Matas-Céspedes
A
,
Arenas
F
, et al
.
The receptor of the colony-stimulating factor-1 (CSF-1R) is a novel prognostic factor and therapeutic target in follicular lymphoma
.
Leukemia
.
2021
;
35
(
9
):
2635
-
2649
.
97.
Papin
A
,
Tessoulin
B
,
Bellanger
C
, et al
.
CSF1R and BTK inhibitions as novel strategies to disrupt the dialog between mantle cell lymphoma and macrophages
.
Leukemia
.
2019
;
33
(
10
):
2442
-
2453
.
98.
Ogura
M
,
Ando
K
,
Suzuki
T
, et al
.
A multicentre phase II study of vorinostat in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma
.
Br J Haematol
.
2014
;
165
(
6
):
768
-
776
.
99.
Kirschbaum
M
,
Frankel
P
,
Popplewell
L
, et al
.
Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma
.
J Clin Oncol
.
2011
;
29
(
9
):
1198
-
1203
.
100.
Evens
AM
,
Balasubramanian
S
,
Vose
JM
, et al
.
A phase I/II multicenter, open-label study of the oral histone deacetylase inhibitor abexinostat in relapsed/refractory lymphoma
.
Clin Cancer Res
.
2016
;
22
(
5
):
1059
-
1066
.
101.
Mondello
P
,
Tadros
S
,
Teater
M
, et al
.
Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma
.
Cancer Discov
.
2020
;
10
(
3
):
440
-
459
.
102.
Deng
S
,
Hu
Q
,
Zhang
H
,
Yang
F
,
Peng
C
,
Huang
C
.
HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy
.
Mol Cancer Ther
.
2019
;
18
(
5
):
900
-
908
.
103.
Zhu
J
,
Wang
F
,
Wang
L
, et al
.
HDAC inhibition increases CXCL12 secretion to recruit natural killer cells in peripheral T-cell lymphoma
.
Cancer Res
.
2024
;
84
(
15
):
2450
-
2467
.
104.
Heward
J
,
Konali
L
,
D’Avola
A
, et al
.
KDM5 inhibition offers a novel therapeutic strategy for the treatment of KMT2D mutant lymphomas
.
Blood
.
2021
;
138
(
5
):
370
-
381
.
105.
Martin
P
,
Bartlett
NL
,
Chavez
JC
, et al
.
Phase 1 study of oral azacitidine (CC-486) plus R-CHOP in previously untreated intermediate- to high-risk DLBCL
.
Blood
.
2022
;
139
(
8
):
1147
-
1159
.
106.
Lesokhin
AM
,
Ansell
SM
,
Armand
P
, et al
.
Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study
.
J Clin Oncol
.
2016
;
34
(
23
):
2698
-
2704
.
107.
Nastoupil
LJ
,
Chin
CK
,
Westin
JR
, et al
.
Safety and activity of pembrolizumab in combination with rituximab in relapsed or refractory follicular lymphoma
.
Blood Adv
.
2022
;
6
(
4
):
1143
-
1151
.
108.
Jacobson
CA
,
Chavez
JC
,
Sehgal
AR
, et al
.
Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial
.
Lancet Oncol
.
2022
;
23
(
1
):
91
-
103
.
109.
Fowler
NH
,
Dickinson
M
,
Dreyling
M
, et al
.
Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial
.
Nat Med
.
2022
;
28
(
2
):
325
-
332
.
110.
Chong
EA
,
Ruella
M
,
Schuster
SJ
;
Lymphoma Program Investigators at the University of Pennsylvania
.
Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy
.
N Engl J Med
.
2021
;
384
(
7
):
673
-
674
.
111.
Ruella
M
,
Korell
F
,
Porazzi
P
,
Maus
MV
.
Mechanisms of resistance to chimeric antigen receptor-T cells in haematological malignancies
.
Nat Rev Drug Discov
.
2023
;
22
(
12
):
976
-
995
.
112.
Yan
Z-X
,
Li
L
,
Wang
W
, et al
.
Clinical efficacy and tumor microenvironment influence in a dose-escalation study of anti-CD19 chimeric antigen receptor T cells in refractory B-cell non-Hodgkin’s lymphoma
.
Clin Cancer Res
.
2019
;
25
(
23
):
6995
-
7003
.
113.
Scholler
N
,
Perbost
R
,
Locke
FL
, et al
.
Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma
.
Nat Med
.
2022
;
28
(
9
):
1872
-
1882
.
114.
Spiegel
JY
,
Patel
S
,
Muffly
L
, et al
.
CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial
.
Nat Med
.
2021
;
27
(
8
):
1419
-
1431
.
115.
Bachiller
M
,
Barceló-Genestar
N
,
Rodriguez-Garcia
A
, et al
.
ARI0003: co-transduced CD19/BCMA dual-targeting CAR-T cells for the treatment of non-Hodgkin lymphoma
.
Mol Ther
.
2025
;
33
(
1
):
317
-
335
.
116.
Bunse
M
,
Pfeilschifter
J
,
Bluhm
J
, et al
.
CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin’s lymphoma and tumor-supportive follicular T helper cells
.
Nat Commun
.
2021
;
12
(
1
):
240
.
117.
Budde
LE
,
Sehn
LH
,
Matasar
M
, et al
.
Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study
.
Lancet Oncol
.
2022
;
23
(
8
):
1055
-
1065
.
118.
Budde
LE
,
Assouline
S
,
Sehn
LH
, et al
.
Single-agent mosunetuzumab shows durable complete responses in patients with relapsed or refractory B-cell lymphomas: phase I dose-escalation study
.
J Clin Oncol
.
2022
;
40
(
5
):
481
-
491
.
119.
Goebeler
M-E
,
Knop
S
,
Viardot
A
, et al
.
Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study
.
J Clin Oncol
.
2016
;
34
(
10
):
1104
-
1111
.
120.
Ghobadi
A
,
Foley
NC
,
Cohen
J
, et al
.
Blinatumomab consolidation post-autologous stem cell transplantation in patients with diffuse large B-cell lymphoma
.
Blood Adv
.
2024
;
8
(
3
):
513
-
522
.
121.
Isshiki
Y
,
Chen
X
,
Teater
M
, et al
.
EZH2 inhibition enhances T cell immunotherapies by inducing lymphoma immunogenicity and improving T cell function
.
Cancer Cell
.
2025
;
43
(
1
):
49
-
68.e9
.
122.
Luo
M-X
,
Tan
T
,
Trussart
M
, et al
.
Venetoclax dose escalation rapidly activates a BAFF/BCL-2 survival axis in chronic lymphocytic leukemia
.
Blood
.
2024
;
144
(
26
):
2748
-
2761
.
123.
Egle
A
,
Harris
AW
,
Bath
ML
,
O’Reilly
L
,
Cory
S
.
VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia
.
Blood
.
2004
;
103
(
6
):
2276
-
2283
.
124.
Zawil
L
,
Marchiol
T
,
Brauge
B
, et al
.
Distinct B-cell specific transcriptional contexts of the BCL2 oncogene impact pre-malignant development in mouse models
.
Cancers (Basel)
.
2022
;
14
(
21
):
5337
.
125.
Knittel
G
,
Liedgens
P
,
Korovkina
D
, et al
.
B-cell–specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice
.
Blood
.
2016
;
127
(
22
):
2732
-
2741
.
126.
Casola
S
,
Cattoretti
G
,
Uyttersprot
N
, et al
.
Tracking germinal center B cells expressing germ-line immunoglobulin gamma1 transcripts by conditional gene targeting
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
19
):
7396
-
7401
.
127.
Ten Hacken
E
,
Sewastianik
T
,
Yin
S
, et al
.
In vivo modeling of CLL transformation to Richter syndrome reveals convergent evolutionary paths and therapeutic vulnerabilities
.
Blood Cancer Discov
.
2023
;
4
(
2
):
150
-
169
.
128.
Louissaint
A
.
Mouse PDX as non-clinical models for lymphoma
.
Hematol Oncol
.
2019
;
37
(
S2
):
40
-
41
.
129.
Olson
B
,
Li
Y
,
Lin
Y
,
Liu
ET
,
Patnaik
A
.
Mouse models for cancer immunotherapy research
.
Cancer Discov
.
2018
;
8
(
11
):
1358
-
1365
.
130.
Lamaison
C
,
Latour
S
,
Hélaine
N
, et al
.
A novel 3D culture model recapitulates primary FL B-cell features and promotes their survival
.
Blood Adv
.
2021
;
5
(
23
):
5372
-
5386
.
131.
Kastenschmidt
JM
,
Schroers-Martin
JG
,
Sworder
BJ
, et al
.
A human lymphoma organoid model for evaluating and targeting the follicular lymphoma tumor immune microenvironment
.
Cell Stem Cell
.
2024
;
31
(
3
):
410
-
420.e4
.
132.
Faria
C
,
Gava
F
,
Gravelle
P
, et al
.
Patient-derived lymphoma spheroids integrating immune tumor microenvironment as preclinical follicular lymphoma models for personalized medicine
.
J Immunother Cancer
.
2023
;
11
(
10
):
e007156
.
133.
Dobaño-López
C
,
Valero
JG
,
Araujo-Ayala
F
, et al
.
Patient-derived follicular lymphoma spheroids recapitulate lymph node signaling and immune profile uncovering galectin-9 as a novel immunotherapeutic target
.
Blood Cancer J
.
2024
;
14
(
1
):
75
.
134.
Santamaria-Martínez
A
,
Epiney
J
,
Srivastava
D
, et al
.
Development of patient-derived lymphomoids with preserved tumor architecture for lymphoma therapy screening
.
Nat Commun
.
2024
;
15
(
1
):
10650
.
You do not currently have access to this content.
Sign in via your Institution