• Reduced YAP1 expression suppresses thrombopoiesis through cytoskeletal actin misalignment in MKs, causing thrombocytopenia during ITP.

  • YAP1, regulated by GATA-binding protein 1, cooperates with myosin heavy chain 9 to reach actin reorganization, facilitating thrombopoiesis.

Abstract

Immune thrombocytopenia (ITP) is a complicated bleeding disease characterized by a sharp platelet reduction. As a dominating element involved in ITP, megakaryocytes (MKs) are responsible for thrombopoiesis. However, the mechanism underlying the dysregulation of thrombopoiesis that occurs in ITP remains unidentified. In this study, we examined the role of Yes-associated protein 1 (YAP1) in thrombopoiesis during ITP. We observed reduced YAP1 expression with cytoskeletal actin misalignment in MKs from patients with ITP. Using an experimental ITP mouse model, we showed that reduced YAP1 expression induced aberrant MK distribution, reduced the percentage of late MKs among the total MKs, and caused submaximal platelet recovery. Mechanistically, YAP1 upregulation by binding of GATA-binding protein 1 to its promoter promoted MK maturation. Phosphorylated YAP1 promoted cytoskeletal activation by binding its WW2 domain to myosin heavy chain 9, thereby facilitating thrombopoiesis. Targeting YAP1 with its activator XMU-MP-1 was sufficient to rescue cytoskeletal defects and thrombopoiesis dysregulation in YAP1+/− mice with ITP and patients. Taken together, these results demonstrate the crucial role of YAP1 in thrombopoiesis, providing potential for the development of diagnostic markers and therapeutic options for ITP.

1.
Provan
D
,
Semple
JW
.
Recent advances in the mechanisms and treatment of immune thrombocytopenia
.
EBioMedicine
.
2022
;
76
:
103820
.
2.
Yazdanbakhsh
K
,
Provan
D
,
Semple
JW
.
The role of T cells and myeloid-derived suppressor cells in refractory immune thrombocytopenia
.
Br J Haematol
.
2023
;
203
(
1
):
54
-
61
.
3.
Semple
JW
,
Rebetz
J
,
Maouia
A
,
Kapur
R
.
An update on the pathophysiology of immune thrombocytopenia
.
Curr Opin Hematol
.
2020
;
27
(
6
):
423
-
429
.
4.
Marini
I
,
Bakchoul
T
.
Pathophysiology of autoimmune thrombocytopenia: current insight with a focus on thrombopoiesis
.
Hämostaseologie
.
2019
;
39
(
3
):
227
-
237
.
5.
Audia
S
,
Mahévas
M
,
Nivet
M
,
Ouandji
S
,
Ciudad
M
,
Bonnotte
B
.
Immune thrombocytopenia: recent advances in pathogenesis and treatments
.
Hemasphere
.
2021
;
5
(
6
):
e574
.
6.
Malik
A
,
Sayed
AA
,
Han
P
, et al
.
The role of CD8+ T-cell clones in immune thrombocytopenia
.
Blood
.
2023
;
141
(
20
):
2417
-
2429
.
7.
Cooper
N
,
Ghanima
W
.
Immune thrombocytopenia
.
N Engl J Med
.
2019
;
381
(
10
):
945
-
955
.
8.
Crispino
JD
.
Introduction to a review series on megakaryopoiesis and platelet production
.
Blood
.
2022
;
139
(
22
):
3227
.
9.
Suraneni
PK
,
Corey
SJ
,
Hession
MJ
, et al
.
Dynamins 2 and 3 control the migration of human megakaryocytes by regulating CXCR4 surface expression and ITGB1 activity
.
Blood Adv
.
2018
;
2
(
23
):
3540
-
3552
.
10.
Bhatlekar
S
,
Manne
BK
,
Basak
I
, et al
.
miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin
.
Blood
.
2020
;
136
(
15
):
1760
-
1772
.
11.
Wang
M
,
Feng
R
,
Zhang
JM
, et al
.
Dysregulated megakaryocyte distribution associated with nestin(+) mesenchymal stem cells in immune thrombocytopenia
.
Blood Adv
.
2019
;
3
(
9
):
1416
-
1428
.
12.
Sudol
M
.
Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the yes proto-oncogene product
.
Oncogene
.
1994
;
9
(
8
):
2145
-
2152
.
13.
Tumaneng
K
,
Schlegelmilch
K
,
Russell
RC
, et al
.
YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29
.
Nat Cell Biol
.
2012
;
14
(
12
):
1322
-
1329
.
14.
Ji
L
,
Liu
C
,
Yuan
Y
, et al
.
Key roles of Rho GTPases, YAP, and mutant P53 in anti-neoplastic effects of statins
.
Fundam Clin Pharmacol
.
2020
;
34
(
1
):
4
-
10
.
15.
Dupont
S
,
Morsut
L
,
Aragona
M
, et al
.
Role of YAP/TAZ in mechanotransduction
.
Nature
.
2011
;
474
(
7350
):
179
-
183
.
16.
Papaspyropoulos
A
,
Bradley
L
,
Thapa
A
, et al
.
RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73
.
Nat Commun
.
2018
;
9
(
1
):
424
.
17.
Lee
DH
,
Kim
TS
,
Lee
D
,
Lim
DS
.
Mammalian sterile 20 kinase 1 and 2 are important regulators of hematopoietic stem cells in stress condition
.
Sci Rep
.
2018
;
8
(
1
):
942
.
18.
Stoner
SA
,
Yan
M
,
Liu
KTH
, et al
.
Hippo kinase loss contributes to del(20q) hematologic malignancies through chronic innate immune activation
.
Blood
.
2019
;
134
(
20
):
1730
-
1744
.
19.
Dent
P
,
Booth
L
,
Roberts
JL
, et al
.
Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells
.
Oncogene
.
2019
;
38
(
30
):
5890
-
5904
.
20.
Roy
A
,
Lordier
L
,
Pioche-Durieu
C
, et al
.
Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint
.
Haematologica
.
2016
;
101
(
12
):
1469
-
1478
.
21.
Lorthongpanich
C
,
Jiamvoraphong
N
,
Supraditaporn
K
,
Klaihmon
P
,
U-Pratya
Y
,
Issaragrisil
S
.
The Hippo pathway regulates human megakaryocytic differentiation
.
Thromb Haemost
.
2017
;
117
(
1
):
116
-
126
.
22.
Csibi
A
,
Blenis
J
.
Hippo-YAP and mTOR pathways collaborate to regulate organ size
.
Nat Cell Biol
.
2012
;
14
(
12
):
1244
-
1245
.
23.
Zhao
HY
,
Ma
YH
,
Li
DQ
, et al
.
Low-dose chidamide restores immune tolerance in ITP in mice and humans
.
Blood
.
2019
;
133
(
7
):
730
-
742
.
24.
Nei
Y
,
Obata-Ninomiya
K
,
Tsutsui
H
, et al
.
GATA-1 regulates the generation and function of basophils
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
46
):
18620
-
18625
.
25.
Balduini
CL
,
Pecci
A
,
Loffredo
G
, et al
.
Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis
.
Thromb Haemost
.
2004
;
91
(
1
):
129
-
140
.
26.
Xu
G
,
Nagano
M
,
Kanezaki
R
, et al
.
Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome
.
Blood
.
2003
;
102
(
8
):
2960
-
2968
.
27.
Stachura
DL
,
Chou
ST
,
Weiss
MJ
.
Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1
.
Blood
.
2006
;
107
(
1
):
87
-
97
.
28.
Callus
BA
,
Finch-Edmondson
ML
,
Fletcher
S
,
Wilton
SD
.
YAPping about and not forgetting TAZ
.
FEBS Lett
.
2019
;
593
(
3
):
253
-
276
.
29.
Pal
K
,
Nowak
R
,
Billington
N
, et al
.
Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease
.
Blood
.
2020
;
135
(
21
):
1887
-
1898
.
30.
Aguilar
A
,
Pertuy
F
,
Eckly
A
, et al
.
Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation
.
Blood
.
2016
;
128
(
16
):
2022
-
2032
.
31.
Pertuy
F
,
Eckly
A
,
Weber
J
, et al
.
Myosin IIA is critical for organelle distribution and F-actin organization in megakaryocytes and platelets
.
Blood
.
2014
;
123
(
8
):
1261
-
1269
.
32.
Lo
RW
,
Li
L
,
Pluthero
FG
,
Leung
R
,
Eto
K
,
Kahr
WHA
.
The endoplasmic reticulum protein SEC22B interacts with NBEAL2 and is required for megakaryocyte alpha-granule biogenesis
.
Blood
.
2020
;
136
(
6
):
715
-
725
.
33.
Vrbensky
JR
,
Nazy
I
,
Toltl
LJ
, et al
.
Megakaryocyte apoptosis in immune thrombocytopenia
.
Platelets
.
2018
;
29
(
7
):
729
-
732
.
You do not currently have access to this content.
Sign in via your Institution