• CD70-targeted CAR T cells secreting a CD33 T-cell engaging antibody molecule eradicate CD33- or CD70-deficient AML.

Abstract

CD70 has emerged as a promising target in acute myeloid leukemia (AML), and we have previously demonstrated the potency of an optimized CD70-targeted ligand-based chimeric antigen receptor (CAR). However, here, we identify in vivo CD70 antigen escape as a limitation of single-antigen targeting. Combination targeting of CD70 and CD33 may overcome AML antigen heterogeneity. We hypothesized that modifying our CD70 CAR platform to secrete a bispecific T-cell engaging antibody molecule (TEAM) targeting CD33 (7033) would create a therapeutic window whereby AML heterogeneity could be addressed without increasing tissue toxicity. We found that CD33 TEAMs mediated specific cytotoxicity across AML cell lines, including CD33 or CD70 single-antigen knockout tumors. 7033 CAR T cells eradicated tumor in an in vivo mixed tumor model of CD70 antigen escape and outperformed the previously optimized CD70 CAR in a patient-derived xenograft. In vivo gene expression profiling of CAR T cells revealed enhanced 7033 CAR T-cell pathway scoring for persistence, activation, and T-cell receptor signaling. Additionally, CD33 TEAMs successfully redirected T cells isolated from patients with AML to activate, secrete cytokines, and kill tumor targets despite exposure to substantial prior cytotoxic therapies. In summary, our findings demonstrate the feasibility of our 7033 CAR to overcome AML heterogeneity and leverage the bystander T cells of patients; this approach warrants further study in patients with this dire clinical need.

1.
Döhner
H
,
Weisdorf
DJ
,
Bloomfield
CD
.
Acute myeloid leukemia
.
N Engl J Med
.
2015
;
373
(
12
):
1136
-
1152
.
2.
Yarchoan
M
,
Hopkins
A
,
Jaffee
EM
.
Tumor mutational burden and response rate to PD-1 inhibition
.
N Engl J Med
.
2017
;
377
(
25
):
2500
-
2501
.
3.
Daver
NG
,
Basu
S
,
Garcia-Manero
G
, et al
.
Phase IB/II study of nivolumab with azacytidine (AZA) in patients (pts) with relapsed AML
.
J Clin Orthod
.
2017
;
35
(
suppl 15
):
7026
. 7026.
4.
Lawrence
MS
,
Stojanov
P
,
Polak
P
, et al
.
Mutational heterogeneity in cancer and the search for new cancer-associated genes
.
Nature
.
2013
;
499
(
7457
):
214
-
218
.
5.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
6.
Pyzer
AR
,
Stroopinsky
D
,
Rosenblatt
J
, et al
.
Myeloid-derived suppressor cells are expanded in patients with AML and are dependent on MUC1 expression
.
Blood
.
2014
;
124
(
21
):
226
. 226.
7.
Alex
AA
,
Tartour
E
,
Gey
A
, et al
.
Myeloid derived suppressor cells in acute leukemia and its association with conventional cytogenetic and molecular risk factors [abstract]
.
Blood
.
2012
;
120
(
21
):
1446
.
8.
Williams
P
,
Basu
S
,
Garcia-Manero
G
, et al
.
The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia
.
Cancer
.
2019
;
125
(
9
):
1470
-
1481
.
9.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al
.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
10.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
11.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
12.
Wang
M
,
Munoz
J
,
Goy
A
, et al
.
KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2020
;
382
(
14
):
1331
-
1342
.
13.
Raje
N
,
Berdeja
J
,
Lin
Y
, et al
.
Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2019
;
380
(
18
):
1726
-
1737
.
14.
Abramson
JS
,
Palomba
ML
,
Gordon
LI
, et al
.
Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
.
Lancet
.
2020
;
396
(
10254
):
839
-
852
.
15.
Mardiros
A
,
Dos Santos
C
,
McDonald
T
, et al
.
T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia
.
Blood
.
2013
;
122
(
18
):
3138
-
3148
.
16.
Luo
Y
,
Chang
L-J
,
Hu
Y
,
Dong
L
,
Wei
G
,
Huang
H
.
First-in-man CD123-specific chimeric antigen receptor-modified T cells for the treatment of refractory acute myeloid leukemia [abstract]
.
Blood
.
2015
;
126
(
23
):
3778
.
17.
Wang
Q-S
,
Wang
Y
,
Lv
H-Y
, et al
.
Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia
.
Mol Ther
.
2015
;
23
(
1
):
184
-
191
.
18.
Kim
MY
,
Yu
K-R
,
Kenderian
SS
, et al
.
Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia
.
Cell
.
2018
;
173
(
6
):
1439
-
1453.e19
.
19.
Jetani
H
,
Garcia-Cadenas
I
,
Nerreter
T
, et al
.
CAR T-cells targeting FLT3 have potent activity against FLT3−ITD+ AML and act synergistically with the FLT3-inhibitor crenolanib
.
Leukemia
.
2018
;
32
(
5
):
1168
-
1179
.
20.
Hofmann
S
,
Schubert
M-L
,
Wang
L
, et al
.
Chimeric antigen receptor (CAR) T cell therapy in acute myeloid leukemia (AML)
.
J Clin Med
.
2019
;
8
(
2
):
200
.
21.
Majzner
RG
,
Mackall
CL
.
Clinical lessons learned from the first leg of the CAR T cell journey
.
Nat Med
.
2019
;
25
(
9
):
1341
-
1355
.
22.
Choi
BD
,
Yu
X
,
Castano
AP
, et al
.
CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity
.
Nat Biotechnol
.
2019
;
37
(
9
):
1049
-
1058
.
23.
Choi
BD
,
Gerstner
ER
,
Frigault
MJ
, et al
.
Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma
.
N Engl J Med
.
2024
;
390
(
14
):
1290
-
1298
.
24.
Wehrli
M
,
Guinn
S
,
Birocchi
F
, et al
.
Mesothelin CAR T-cells secreting anti-FAP/anti-CD3 molecules efficiently target pancreatic adenocarcinoma and its stroma
.
Clin Cancer Res
.
2024
;
30
(
9
):
1859
-
1877
.
25.
Perna
F
,
Berman
SH
,
Soni
RK
, et al
.
Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML
.
Cancer Cell
.
2017
;
32
(
4
):
506
-
519.e5
.
26.
Hintzen
RQ
,
Lens
SM
,
Lammers
K
,
Kuiper
H
,
Beckmann
MP
,
van Lier
RA
.
Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation
.
J Immunol
.
1995
;
154
(
6
):
2612
-
2623
.
27.
Riether
C
,
Schürch
CM
,
Bührer
ED
, et al
.
CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia
.
J Exp Med
.
2017
;
214
(
2
):
359
-
380
.
28.
Ochsenbein
AF
,
Riether
C
,
Bacher
U
, et al
.
Argx-110 targeting CD70, in combination with azacitidine, shows favorable safety profile and promising anti-leukemia activity in newly diagnosed AML patients in an ongoing phase 1/2 clinical trial [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
2680
.
29.
Pabst
T
,
Vey
N
,
Adès
L
, et al
.
Results from a phase I/II trial of cusatuzumab combined with azacitidine in patients with newly diagnosed acute myeloid leukemia who are ineligible for intensive chemotherapy
.
Haematologica
.
2023
;
108
(
7
):
1793
-
1802
.
30.
Slaney
CY
,
Wang
P
,
Darcy
PK
,
Kershaw
MH
.
CARs versus BiTEs: a comparison between T cell--redirection strategies for cancer treatment
.
Cancer Discov
.
2018
;
8
(
8
):
924
-
934
.
31.
Leick
MB
,
Silva
H
,
Scarfò
I
, et al
.
Non-cleavable hinge enhances avidity and expansion of CAR-T cells for acute myeloid leukemia
.
Cancer Cell
.
2022
;
40
(
5
):
494
-
508.e5
.
32.
Nguyen
DH
,
Ball
ED
,
Varki
A
.
Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs
.
Exp Hematol
.
2006
;
34
(
6
):
728
-
735
.
33.
Hauswirth
AW
,
Florian
S
,
Printz
D
, et al
.
Expression of the target receptor CD33 in CD34+/CD38-/CD123+ AML stem cells
.
Eur J Clin Invest
.
2007
;
37
(
1
):
73
-
82
.
34.
Robertson
MJ
,
Soiffer
RJ
,
Freedman
AS
, et al
.
Human bone marrow depleted of CD33-positive cells mediates delayed but durable reconstitution of hematopoiesis: clinical trial of MY9 monoclonal antibody-purged autografts for the treatment of acute myeloid leukemia
.
Blood
.
1992
;
79
(
9
):
2229
-
2236
.
35.
Jitschin
R
,
Saul
D
,
Braun
M
, et al
.
CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells
.
J Immunother Cancer
.
2018
;
6
(
1
):
116
.
36.
Yuraszeck
T
,
Kasichayanula
S
,
Benjamin
JE
.
Translation and clinical development of bispecific T-cell engaging antibodies for cancer treatment
.
Clin Pharmacol Ther
.
2017
;
101
(
5
):
634
-
645
.
37.
Appelbaum
J
,
Price
AE
,
Oda
K
, et al
.
Drug-regulated CD33-targeted CAR T cells control AML using clinically optimized rapamycin dosing
.
J Clin Invest
.
2024
;
134
(
9
):
e162593
.
38.
Lv
J
,
Qin
L
,
Zhao
R
, et al
.
Disruption of CISH promotes the antitumor activity of human T cells and decreases PD-1 expression levels
.
Mol Ther Oncolytics
.
2023
;
28
:
46
-
58
.
39.
Good
CR
,
Aznar
MA
,
Kuramitsu
S
, et al
.
An NK-like CAR T cell transition in CAR T cell dysfunction
.
Cell
.
2021
;
184
(
25
):
6081
-
6100.e26
.
40.
Das
RK
,
Vernau
L
,
Grupp
SA
,
Barrett
DM
.
Naïve T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers
.
Cancer Discov
.
2019
;
9
(
4
):
492
-
499
.
41.
Fraietta
JA
,
Lacey
SF
,
Orlando
EJ
, et al
.
Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
5
):
563
-
571
.
42.
Tambaro
FP
,
Singh
H
,
Jones
E
, et al
.
Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia
.
Leukemia
.
2021
;
35
(
11
):
3282
-
3286
.
43.
Lin
G
,
Zhang
Y
,
Yu
L
,
Wu
D
.
Cytotoxic effect of CLL-1 CAR-T cell immunotherapy with PD-1 silencing on relapsed/refractory acute myeloid leukemia
.
Mol Med Rep
.
2021
;
23
(
3
):
208
.
44.
Wermke
M
,
Kraus
S
,
Ehninger
A
, et al
.
Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML
.
Blood
.
2021
;
137
(
22
):
3145
-
3148
.
45.
Ritchie
DS
,
Neeson
PJ
,
Khot
A
, et al
.
Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia
.
Mol Ther
.
2013
;
21
(
11
):
2122
-
2129
.
46.
Baumeister
SH
,
Murad
J
,
Werner
L
, et al
.
Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma
.
Cancer Immunol Res
.
2019
;
7
(
1
):
100
-
112
.
47.
Shahzad
M
,
Nguyen
A
,
Hussain
A
, et al
.
Outcomes with chimeric antigen receptor t-cell therapy in relapsed or refractory acute myeloid leukemia: a systematic review and meta-analysis
.
Front Immunol
.
2023
;
14
:
1152457
.
48.
Pal
S
,
Tran
B
,
Haanen
J
, et al
.
558 CTX130 allogeneic CRISPR-Cas9–engineered chimeric antigen receptor (CAR) T cells in patients with advanced clear cell renal cell carcinoma: Results from the phase 1 COBALT-RCC study
.
J Immunother Cancer
.
2022
;
10
(
suppl 2
).
49.
Srour
S
,
Kotecha
R
,
Curti
B
, et al
.
Abstract CT011: a phase 1 multicenter study (TRAVERSE) evaluating the safety and efficacy of ALLO-316 following conditioning regimen in pts with advanced or metastatic clear cell renal cell carcinoma (ccRCC)
.
Cancer Res
.
2023
;
83
(
suppl 8
):
CT011
. CT011.
50.
Iyer
SP
,
Sica
RA
,
Ho
PJ
, et al
.
S262: the COBALT-LYM study OF CTX130: a phase 1 dose escalation study of CD70-targeted allogeneic CRISPR-Cas9–engineered CAR T cells in patients with relapsed/refractory (R/R) T-cell malignancies
.
HemaSphere
.
2022
;
6
:
163
-
164
.
51.
American Association for Cancer Research
.
Going after CD70 with CAR T, NK Cells
.
Cancer Discov
.
2023
;
13
(
1
):
4
-
5
.
52.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
53.
Neelapu
SS
,
Rossi
JM
,
Jacobson
CA
, et al
.
CD19-loss with preservation of other B cell lineage features in patients with large B cell lymphoma who relapsed post-axi-cel [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
203
.
54.
Godwin
CD
,
McDonald
GB
,
Walter
RB
.
Sinusoidal obstruction syndrome following CD33-targeted therapy in acute myeloid leukemia
.
Blood
.
2017
;
129
(
16
):
2330
-
2332
.
55.
Ali
S
,
Dunmore
H-M
,
Karres
D
, et al
.
The EMA review of Mylotarg (gemtuzumab ozogamicin) for the treatment of acute myeloid leukemia
.
Oncol
.
2019
;
24
(
5
):
e171
-
e179
.
56.
Richardson
PG
,
Corbacioglu
S
.
Veno-occlusive disease/sinusoidal obstruction syndrome in patients with prior gemtuzumab ozogamicin: literature analysis of survival after defibrotide treatment
.
Blood Cancer J
.
2020
;
10
(
3
):
29
.
57.
Zhu
M
,
Wu
B
,
Brandl
C
, et al
.
Blinatumomab, a Bispecific T-cell Engager (BiTE(®)) for CD-19 targeted cancer immunotherapy: clinical pharmacology and its implications
.
Clin Pharmacokinet
.
2016
;
55
(
10
):
1271
-
1288
.
58.
Kenderian
SS
,
Ruella
M
,
Shestova
O
, et al
.
CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia
.
Leukemia
.
2015
;
29
(
8
):
1637
-
1647
.
59.
Sauer
T
,
Parikh
K
,
Sharma
S
, et al
.
CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity
.
Blood
.
2021
;
138
(
4
):
318
-
330
.
60.
Cornetta
K
,
Lin
T-Y
,
Pellin
D
,
Kohn
DB
.
Meeting FDA Guidance recommendations for replication-competent virus and insertional oncogenesis testing
.
Mol Ther Methods Clin Dev
.
2023
;
28
:
28
-
39
.
61.
Rafiq
S
,
Hackett
CS
,
Brentjens
RJ
.
Engineering strategies to overcome the current roadblocks in CAR T cell therapy
.
Nat Rev Clin Oncol
.
2020
;
17
(
3
):
147
-
167
.
You do not currently have access to this content.
Sign in via your Institution