• Arginine metabolism regulates erythroid lineage differentiation of human progenitor cells via eIF5A-induced protein synthesis.

  • RP haploinsufficiency negatively affects eIF5A hypusination in erythroid progenitors.

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1–dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.

1.
Hu
J
,
Liu
J
,
Xue
F
, et al
.
Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo
.
Blood
.
2013
;
121
(
16
):
3246
-
3253
.
2.
An
X
,
Schulz
VP
,
Li
J
, et al
.
Global transcriptome analyses of human and murine terminal erythroid differentiation
.
Blood
.
2014
;
123
(
22
):
3466
-
3477
.
3.
Li
J
,
Hale
J
,
Bhagia
P
, et al
.
Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E
.
Blood
.
2014
;
124
(
24
):
3636
-
3645
.
4.
Ludwig
LS
,
Lareau
CA
,
Bao
EL
, et al
.
Transcriptional states and chromatin accessibility underlying human erythropoiesis
.
Cell Rep
.
2019
;
27
(
11
):
3228
-
3240.e7
.
5.
Schulz
VP
,
Yan
H
,
Lezon-Geyda
K
, et al
.
A unique epigenomic landscape defines human erythropoiesis
.
Cell Rep
.
2019
;
28
(
11
):
2996
-
3009.e7
.
6.
Valent
P
,
Busche
G
,
Theurl
I
, et al
.
Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts
.
Haematologica
.
2018
;
103
(
10
):
1593
-
1603
.
7.
Endicott
M
,
Jones
M
,
Hull
J
.
Amino acid metabolism as a therapeutic target in cancer: a review
.
Amino Acids
.
2021
;
53
(
8
):
1169
-
1179
.
8.
Wei
Z
,
Liu
X
,
Cheng
C
,
Yu
W
,
Yi
P
.
Metabolism of amino acids in cancer
.
Front Cell Dev Biol
.
2020
;
8
:
603837
.
9.
Spinelli
JB
,
Haigis
MC
.
The multifaceted contributions of mitochondria to cellular metabolism
.
Nat Cell Biol
.
2018
;
20
(
7
):
745
-
754
.
10.
Oburoglu
L
,
Romano
M
,
Taylor
N
,
Kinet
S
.
Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation
.
Curr Opin Hematol
.
2016
;
23
(
3
):
198
-
205
.
11.
Oburoglu
L
,
Tardito
S
,
Fritz
V
, et al
.
Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification
.
Cell Stem Cell
.
2014
;
15
(
2
):
169
-
184
.
12.
Burch
JS
,
Marcero
JR
,
Maschek
JA
, et al
.
Glutamine via alpha-ketoglutarate dehydrogenase provides succinyl-CoA for heme synthesis during erythropoiesis
.
Blood
.
2018
;
132
(
10
):
987
-
998
.
13.
Chung
J
,
Bauer
DE
,
Ghamari
A
, et al
.
The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability
.
Sci Signal
.
2015
;
8
(
372
):
ra34
.
14.
Gonzalez-Menendez
P
,
Romano
M
,
Yan
H
, et al
.
An IDH1-vitamin C crosstalk drives human erythroid development by inhibiting pro-oxidant mitochondrial metabolism
.
Cell Rep
.
2021
;
34
(
5
):
108723
.
15.
Huang
NJ
,
Lin
YC
,
Lin
CY
, et al
.
Enhanced phosphocholine metabolism is essential for terminal erythropoiesis
.
Blood
.
2018
;
131
(
26
):
2955
-
2966
.
16.
Morris
SM
.
Arginine: beyond protein
.
Am J Clin Nutr
.
2006
;
83
(
2
):
508S
-
512S
.
17.
Shima
Y
,
Maeda
T
,
Aizawa
S
, et al
.
L-arginine import via cationic amino acid transporter CAT1 is essential for both differentiation and proliferation of erythrocytes
.
Blood
.
2006
;
107
(
4
):
1352
-
1356
.
18.
Rotoli
BM
,
Closs
EI
,
Barilli
A
, et al
.
Arginine transport in human erythroid cells: discrimination of CAT1 and 4F2hc/y+LAT2 roles
.
Pflugers Arch
.
2009
;
458
(
6
):
1163
-
1173
.
19.
Park
MH
,
Wolff
EC
.
Hypusine, a polyamine-derived amino acid critical for eukaryotic translation
.
J Biol Chem
.
2018
;
293
(
48
):
18710
-
18718
.
20.
Dever
TE
,
Gutierrez
E
,
Shin
BS
.
The hypusine-containing translation factor eIF5A
.
Crit Rev Biochem Mol Biol
.
2014
;
49
(
5
):
413
-
425
.
21.
Dever
TE
,
Ivanov
IP
.
Roles of polyamines in translation
.
J Biol Chem
.
2018
;
293
(
48
):
18719
-
18729
.
22.
Khajuria
RK
,
Munschauer
M
,
Ulirsch
JC
, et al
.
Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis
.
Cell
.
2018
;
173
(
1
):
90
-
103.e19
.
23.
Bello
E
,
Kerry
J
,
Singh
S
, et al
.
L-leucine increases translation of RPS14 and LARP1 in erythroblasts from del(5q) myelodysplastic syndrome patients
.
Haematologica
.
2018
;
103
(
11
):
e496
-
e500
.
24.
Flygare
J
,
Kiefer
T
,
Miyake
K
, et al
.
Deficiency of ribosomal protein S19 in CD34+ cells generated by siRNA blocks erythroid development and mimics defects seen in Diamond-Blackfan anemia
.
Blood
.
2005
;
105
(
12
):
4627
-
4634
.
25.
Moniz
H
,
Gastou
M
,
Leblanc
T
, et al
.
Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro
.
Cell Death Dis
.
2012
;
3
(
7
):
e356
.
26.
Deves
R
,
Boyd
CA
.
Transporters for cationic amino acids in animal cells: discovery, structure, and function
.
Physiol Rev
.
1998
;
78
(
2
):
487
-
545
.
27.
Verrey
F
,
Closs
EI
,
Wagner
CA
,
Palacin
M
,
Endou
H
,
Kanai
Y
.
CATs and HATs: the SLC7 family of amino acid transporters
.
Pflugers Arch
.
2004
;
447
(
5
):
532
-
542
.
28.
Closs
EI
,
Boissel
JP
,
Habermeier
A
,
Rotmann
A
.
Structure and function of cationic amino acid transporters (CATs)
.
J Membr Biol
.
2006
;
213
(
2
):
67
-
77
.
29.
Beyer
SR
,
Mallmann
RT
,
Jaenecke
I
,
Habermeier
A
,
Boissel
JP
,
Closs
EI
.
Identification of cysteine residues in human cationic amino acid transporter hCAT-2A that are targets for inhibition by N-ethylmaleimide
.
J Biol Chem
.
2013
;
288
(
42
):
30411
-
30419
.
30.
Liang
R
,
Menon
V
,
Qiu
J
, et al
.
Mitochondrial localization and moderated activity are key to murine erythroid enucleation
.
Blood Adv
.
2021
;
5
(
10
):
2490
-
2504
.
31.
Burns
MR
,
Graminski
GF
,
Weeks
RS
,
Chen
Y
,
O'Brien
TG
.
Lipophilic lysine-spermine conjugates are potent polyamine transport inhibitors for use in combination with a polyamine biosynthesis inhibitor
.
J Med Chem
.
2009
;
52
(
7
):
1983
-
1993
.
32.
Igarashi
K
,
Kashiwagi
K
.
Modulation of cellular function by polyamines
.
Int J Biochem Cell Biol
.
2010
;
42
(
1
):
39
-
51
.
33.
Cano
VSP
,
Jeon
GA
,
Johansson
HE
, et al
.
Mutational analyses of human eIF5A-1--identification of amino acid residues critical for eIF5A activity and hypusine modification
.
FEBS J
.
2008
;
275
(
1
):
44
-
58
.
34.
Jakus
J
,
Wolff
EC
,
Park
MH
,
Folk
JE
.
Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono-guanylated diamines and polyamines
.
J Biol Chem
.
1993
;
268
(
18
):
13151
-
13159
.
35.
Abbruzzese
A
,
Hanauske-Abel
HM
,
Park
MH
,
Henke
S
,
Folk
JE
.
The active site of deoxyhypusyl hydroxylase: use of catecholpeptides and their component chelator and peptide moieties as molecular probes
.
Biochim Biophys Acta
.
1991
;
1077
(
2
):
159
-
166
.
36.
Liu
J
,
Xu
Y
,
Stoleru
D
,
Salic
A
.
Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
2
):
413
-
418
.
37.
Hidalgo San Jose
L
,
Signer
RAJ
.
Cell-type-specific quantification of protein synthesis in vivo
.
Nat Protoc
.
2019
;
14
(
2
):
441
-
460
.
38.
Gautier
EF
,
Ducamp
S
,
Leduc
M
, et al
.
Comprehensive proteomic analysis of human erythropoiesis
.
Cell Rep
.
2016
;
16
(
5
):
1470
-
1484
.
39.
Mertins
P
,
Tang
LC
,
Krug
K
, et al
.
Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry
.
Nat Protoc
.
2018
;
13
(
7
):
1632
-
1661
.
40.
Ma
D
,
Zheng
B
,
Liu
HL
, et al
.
Klf5 down-regulation induces vascular senescence through eIF5a depletion and mitochondrial fission
.
PLoS Biol
.
2020
;
18
(
8
):
e3000808
.
41.
Melis
N
,
Rubera
I
,
Cougnon
M
, et al
.
Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome
.
J Am Soc Nephrol
.
2017
;
28
(
3
):
811
-
822
.
42.
Liang
Y
,
Piao
C
,
Beuschel
CB
, et al
.
eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction
.
Cell Rep
.
2021
;
35
(
2
):
108941
.
43.
Zhou
J
,
Pang
J
,
Tripathi
M
, et al
.
Spermidine-mediated hypusination of translation factor EIF5A improves mitochondrial fatty acid oxidation and prevents non-alcoholic steatohepatitis progression
.
Nat Commun
.
2022
;
13
(
1
):
5202
.
44.
Kaiser
A
,
Heiss
K
,
Mueller
AK
,
Fimmers
R
,
Matthes
J
,
Njuguna
JT
.
Inhibition of EIF-5A prevents apoptosis in human cardiomyocytes after malaria infection
.
Amino Acids
.
2020
;
52
(
5
):
693
-
710
.
45.
Puleston
DJ
,
Buck
MD
,
Klein Geltink
RI
, et al
.
Polyamines and eIF5A Hypusination modulate mitochondrial respiration and macrophage activation
.
Cell Metab
.
2019
;
30
(
2
):
352
-
363.e8
.
46.
Puleston
DJ
,
Baixauli
F
,
Sanin
DE
, et al
.
Polyamine metabolism is a central determinant of helper T cell lineage fidelity
.
Cell
.
2021
;
184
(
16
):
4186
-
4202.e20
.
47.
Liu
X
,
Zhang
Y
,
Ni
M
, et al
.
Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation
.
Nat Cell Biol
.
2017
;
19
(
6
):
626
-
638
.
48.
Iskander
D
,
Wang
G
,
Heuston
EF
, et al
.
Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia
.
Sci Transl Med
.
2021
;
13
(
610
):
eabf0113
.
49.
Vatikioti
A
,
Karkoulia
E
,
Ioannou
M
,
Strouboulis
J
.
Translational regulation and deregulation in erythropoiesis
.
Exp Hematol
.
2019
;
75
:
11
-
20
.
50.
Qi
J
,
Zhou
N
,
Li
L
, et al
.
Ciclopirox activates PERK-dependent endoplasmic reticulum stress to drive cell death in colorectal cancer
.
Cell Death Dis
.
2020
;
11
(
7
):
582
.
51.
Phang
I
,
Zoumprouli
A
,
Papadopoulos
MC
,
Saadoun
S
.
Microdialysis to optimize cord perfusion and drug delivery in spinal cord injury
.
Ann Neurol
.
2016
;
80
(
4
):
522
-
531
.
52.
Sievert
H
,
Venz
S
,
Platas-Barradas
O
, et al
.
Protein-protein-interaction network organization of the hypusine modification system
.
Mol Cell Proteomics
.
2012
;
11
(
11
):
1289
-
1305
.
53.
Da Costa
L
,
Leblanc
T
,
Mohandas
N
.
Diamond-Blackfan anemia
.
Blood
.
2020
;
136
(
11
):
1262
-
1273
.
54.
Ebert
BL
,
Pretz
J
,
Bosco
J
, et al
.
Identification of RPS14 as a 5q- syndrome gene by RNA interference screen
.
Nature
.
2008
;
451
(
7176
):
335
-
339
.
55.
Schneider
RK
,
Schenone
M
,
Ferreira
MV
, et al
.
Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9
.
Nat Med
.
2016
;
22
(
3
):
288
-
297
.
56.
Sonenberg
N
,
Hinnebusch
AG
.
New modes of translational control in development, behavior, and disease
.
Mol Cell
.
2007
;
28
(
5
):
721
-
729
.
57.
Sanchez
CG
,
Teixeira
FK
,
Czech
B
, et al
.
Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation
.
Cell Stem Cell
.
2016
;
18
(
2
):
276
-
290
.
58.
Tahmasebi
S
,
Amiri
M
,
Sonenberg
N
.
Translational control in stem cells
.
Front Genet
.
2018
;
9
:
709
.
59.
Fabbri
L
,
Chakraborty
A
,
Robert
C
,
Vagner
S
.
The plasticity of mRNA translation during cancer progression and therapy resistance
.
Nat Rev Cancer
.
2021
;
21
(
9
):
558
-
577
.
60.
Kaiser
A
.
Translational control of eIF5A in various diseases
.
Amino Acids
.
2012
;
42
(
2-3
):
679
-
684
.
61.
Hoque
M
,
Park
JY
,
Chang
YJ
, et al
.
Regulation of gene expression by translation factor eIF5A: hypusine-modified eIF5A enhances nonsense-mediated mRNA decay in human cells
.
Translation (Austin)
.
2017
;
5
(
2
):
e1366294
.
62.
Tauc
M
,
Cougnon
M
,
Carcy
R
, et al
.
The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles
.
Cell Biosci
.
2021
;
11
(
1
):
219
.
63.
Kemper
WM
,
Berry
KW
,
Merrick
WC
.
Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta
.
J Biol Chem
.
1976
;
251
(
18
):
5551
-
5557
.
64.
Saini
P
,
Eyler
DE
,
Green
R
,
Dever
TE
.
Hypusine-containing protein eIF5A promotes translation elongation
.
Nature
.
2009
;
459
(
7243
):
118
-
121
.
65.
Doerfel
LK
,
Wohlgemuth
I
,
Kothe
C
,
Peske
F
,
Urlaub
H
,
Rodnina
MV
.
EF-P is essential for rapid synthesis of proteins containing consecutive proline residues
.
Science
.
2013
;
339
(
6115
):
85
-
88
.
66.
Gutierrez
E
,
Shin
BS
,
Woolstenhulme
CJ
, et al
.
eIF5A promotes translation of polyproline motifs
.
Mol Cell
.
2013
;
51
(
1
):
35
-
45
.
67.
Ude
S
,
Lassak
J
,
Starosta
AL
,
Kraxenberger
T
,
Wilson
DN
,
Jung
K
.
Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches
.
Science
.
2013
;
339
(
6115
):
82
-
85
.
68.
Wolff
EC
,
Kang
KR
,
Kim
YS
,
Park
MH
.
Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification
.
Amino Acids
.
2007
;
33
(
2
):
341
-
350
.
69.
Zhang
H
,
Alsaleh
G
,
Feltham
J
, et al
.
Polyamines control eIF5A hypusination, TFEB Translation, and autophagy to reverse B cell senescence
.
Mol Cell
.
2019
;
76
(
1
):
110
-
125.e9
.
70.
Alsaleh
G
,
Panse
I
,
Swadling
L
, et al
.
Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses
.
Elife
.
2020
;
9
:
e57950
.
71.
Bourourou
M
,
Gouix
E
,
Melis
N
, et al
.
Inhibition of eIF5A hypusination pathway as a new pharmacological target for stroke therapy
.
J Cereb Blood Flow Metab
.
2021
;
41
(
5
):
1080
-
1090
.
72.
Zhao
B
,
Mei
Y
,
Yang
J
,
Ji
P
.
Erythropoietin-regulated oxidative stress negatively affects enucleation during terminal erythropoiesis
.
Exp Hematol
.
2016
;
44
(
10
):
975
-
981
.
73.
Luo
ST
,
Zhang
DM
,
Qin
Q
, et al
.
The promotion of erythropoiesis via the regulation of reactive oxygen species by lactic acid
.
Sci Rep
.
2017
;
7
:
38105
.
74.
Li
F
,
He
X
,
Ye
D
, et al
.
NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance
.
Mol Cell
.
2015
;
60
(
4
):
661
-
675
.
75.
Selak
MA
,
Armour
SM
,
MacKenzie
ED
, et al
.
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
.
Cancer Cell
.
2005
;
7
(
1
):
77
-
85
.
76.
Moore
KS
,
von Lindern
M
.
RNA binding proteins and regulation of mRNA translation in erythropoiesis
.
Front Physiol
.
2018
;
9
:
910
.
77.
Alvarez-Dominguez
JR
,
Zhang
X
,
Hu
W
.
Widespread and dynamic translational control of red blood cell development
.
Blood
.
2017
;
129
(
5
):
619
-
629
.
78.
Zhang
S
,
Macias-Garcia
A
,
Velazquez
J
,
Paltrinieri
E
,
Kaufman
RJ
,
Chen
JJ
.
HRI coordinates translation by eIF2alphaP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency
.
Blood
.
2018
;
131
(
4
):
450
-
461
.
79.
Paolini
NA
,
Moore
KS
,
di Summa
FM
,
Fokkema
IFAC
,
t Hoen
PAC
,
von Lindern
M
.
Ribosome profiling uncovers selective mRNA translation associated with eIF2 phosphorylation in erythroid progenitors
.
PLoS One
.
2018
;
13
(
4
):
e0193790
.
80.
Zhang
S
,
Macias-Garcia
A
,
Ulirsch
JC
, et al
.
HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis
.
Elife
.
2019
;
8
:
e46976
.
81.
Tiu
GC
,
Kerr
CH
,
Forester
CM
, et al
.
A p53-dependent translational program directs tissue-selective phenotypes in a model of ribosomopathies
.
Dev Cell
.
2021
;
56
(
14
):
2089
-
2102.e11
. e2011.
82.
Gazda
HT
,
Kho
AT
,
Sanoudou
D
, et al
.
Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia
.
Stem Cells
.
2006
;
24
(
9
):
2034
-
2044
.
83.
Horos
R
,
Ijspeert
H
,
Pospisilova
D
, et al
.
Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts
.
Blood
.
2012
;
119
(
1
):
262
-
272
.
84.
Mills
EW
,
Green
R
.
Ribosomopathies: there's strength in numbers
.
Science
.
2017
;
358
(
6363
):
eaan2755
.
85.
Narla
A
,
Ebert
BL
.
Ribosomopathies: human disorders of ribosome dysfunction
.
Blood
.
2010
;
115
(
16
):
3196
-
3205
.
86.
Chiabrando
D
,
Tolosano
E
.
Diamond Blackfan anemia at the crossroad between ribosome biogenesis and heme metabolism
.
Adv Hematol
.
2010
;
2010
:
790632
.
87.
Zhang
Y
,
Su
D
,
Zhu
J
, et al
.
Oxygen level regulates N-terminal translation elongation of selected proteins through deoxyhypusine hydroxylation
.
Cell Rep
.
2022
;
39
(
8
):
110855
.
88.
Wu
CCC
,
Peterson
A
,
Zinshteyn
B
,
Regot
S
,
Green
R
.
Ribosome collisions trigger general stress responses to regulate cell fate
.
Cell
.
2020
;
182
(
2
):
404
-
416.e14
.
89.
Payne
EM
,
Virgilio
M
,
Narla
A
, et al
.
L-leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway
.
Blood
.
2012
;
120
(
11
):
2214
-
2224
.
90.
Vlachos
A
,
Atsidaftos
E
,
Lababidi
ML
, et al
.
L-leucine improves anemia and growth in patients with transfusion-dependent Diamond-Blackfan anemia: Results from a multicenter pilot phase I/II study from the Diamond-Blackfan Anemia Registry
.
Pediatr Blood Cancer
.
2020
;
67
(
12
):
e28748
.
91.
Saxton
RA
,
Sabatini
DM
.
mTOR signaling in growth, metabolism, and disease
.
Cell
.
2017
;
168
(
6
):
960
-
976
.
92.
Hofer
SJ
,
Liang
Y
,
Zimmermann
A
, et al
.
Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging
.
Autophagy
.
2021
;
17
(
8
):
2037
-
2039
.
93.
Schroeder
S
,
Hofer
SJ
,
Zimmermann
A
, et al
.
Dietary spermidine improves cognitive function
.
Cell Rep
.
2021
;
35
(
2
):
108985
.
94.
Yoshida
K
,
Yoneda
T
,
Kimura
S
,
Fujimoto
K
,
Okajima
E
,
Hirao
Y
.
Polyamines as an inhibitor on erythropoiesis of hemodialysis patients by in vitro bioassay using the fetal mouse liver assay
.
Ther Apher Dial
.
2006
;
10
(
3
):
267
-
272
.
95.
Ballas
SK
,
Mohandas
N
,
Marton
LJ
,
Shohet
SB
.
Stabilization of erythrocyte membranes by polyamines
.
Proc Natl Acad Sci U S A
.
1983
;
80
(
7
):
1942
-
1946
.
96.
Wang
L
,
Liu
Y
,
Qi
C
, et al
.
Oxidative degradation of polyamines by serum supplement causes cytotoxicity on cultured cells
.
Sci Rep
.
2018
;
8
(
1
):
10384
.
You do not currently have access to this content.
Sign in via your Institution