• HSCT yields satisfactory long-term outcomes in patients with PNP deficiency.

  • OS was best in early-diagnosed patients without neurologic symptoms.

Abstract

Purine nucleoside phosphorylase (PNP) deficiency causes inadequate purine metabolite detoxification, which leads to combined immunodeficiency and variable neurologic symptoms. Hematopoietic stem cell transplantation (HSCT) cures the immunodeficiency, but large studies on the long-term outcomes are lacking. In a retrospective study of the European Society for Blood and Marrow Transplantation, we investigated 46 patients with PNP deficiency from 21 centers. We analyzed the presenting clinical signs and outcomes after HSCT. Cognition (0-3), hearing (0-3), interaction (0-4), movement (0-4), and occupation (0-3) (CHIMO) were scored at the last follow-up (FU) visit (no impairment, 17; mild, 15-16; moderate, 12-14; and severe impairment, <12). The median age at initial presentation was 7.5 (1-48) months. The patients presented with infections (41%), neurological dysfunction (39%), both (15%), or autoimmune disease (5%). At the time of HSCT (median age, 26 [2-192] months), neurological abnormalities were observed in 88% of patients. After a median FU of 7.9 (1.0-22.3) years, 40 patients were alive with a 3-year overall survival (OS)/event-free survival (EFS) probabilities of 86% (confidence interval [CI], 77%-97%)/75% (CI, 64%-89%), respectively. High-level (>50%-100%)/low-level donor chimerism (11%-50%) was observed in 85%/15% of patients, respectively, leading to resolution of T lymphopenia. The median overall CHIMO score was 14 (6-17), while the median scores for each component were 3 (0-3), 3 (1-3), 4 (1-4), 3 (1-4), and 2 (0-3), respectively. Patients who underwent HSCT before 24 months after the initial presentation demonstrated superior OS (P = .049). Neurological symptoms that occurred before 11 months of age were associated with reduced OS (P = .027). While the overall results were satisfactory, earlier diagnosis could further improve outcomes.

Purine nucleoside phosphorylase (PNP) deficiency is an autosomal recessive inherited disorder of purine metabolism that affects ∼1% to 2% of all patients with combined immunodeficiency (CID).1-8 PNP is an enzyme that reversibly catalyzes the phosphorolysis of inosine, deoxyinosine, guanosine, and deoxyguanosine1-3 Absent or significantly reduced PNP enzyme activity leads to increased levels of deoxyguanosine and deoxyinosine in plasma, cerebrospinal fluid, and urine.1,4 The deoxytriphosphate compounds, especially deoxyguanosine triphosphate, accumulate intracellularly and induce apoptosis in lymphocytes and neuronal cells, and T lymphocytes are more susceptible to apoptosis than B lymphocytes.4,5 The diagnosis can be confirmed by determining the purine levels in body fluids using high-performance liquid chromatography.6,7 All individuals with biallelic pathogenic variants in PNP are symptomatic.8 

It has been reported that clinical symptoms in PNP deficiency occur at a later stage than in classical severe CID (SCID), particularly between infancy and preschool age.1 Newborn screening for SCID, based on the detection of low numbers or no cells that bear T-cell receptor excision circles, seems to detect only a minority of individuals with PNP deficiency.3,8-15 The more sensitive tandem mass spectrometry analysis of purine metabolites using dried blood spots is unfortunately not routinely available.10,16 

Immunodeficiency in PNP deficiency is characterized by the occurrence of recurrent and/or severe bacterial, viral, or fungal infections,17,18 as well other opportunistic infections.11,19,20 In addition, there is a predisposition to autoimmune diseases (AID+), particularly autoimmune cytopenia, and less commonly to macrophage activation syndrome and hematologic malignancies.15,21,22 Up to two-thirds of patients exhibit heterogeneous neurologic symptoms, including developmental delay and neurologic and cognitive deficits.1,23-27 Neurologic involvement varies clinically from normal to severely impaired, even within families with the same molecular defect.17,18,24 

Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative treatment.15,23,24,28,29 Transient metabolic improvement can be achieved with erythrocyte exchange transfusions (ET),30,31 but unlike for adenosine deaminase deficiency, no enzyme replacement therapy is available.32 There are anecdotal reports that neurologic status improves in some patients after HSCT,15,24,28 whereas neurologic damage persists in others;23 thus, the benefit of HSCT on the long-term neurologic outcomes is largely unknown.

In this study, we provide a comprehensive analysis of the onset and nature of clinical presentation and clinical outcomes in a patient cohort of 46 children with PNP deficiency who underwent HSCT.

Study design

In this multicenter, retrospective study of the Inborn Errors Working Party (IEWP) of the European Society for Blood and Marrow Transplantation (EBMT) (study number 8427029), centers in Europe, Canada, and the United States enrolled patients with proven PNP deficiency who underwent transplantation between 1998 and 2022. The criteria for inclusion required at least 1 of the following: (1) absent or severely deficient PNP enzyme activity (<5% of normal as measured in erythrocytes from untransfused patients) and (2) genetic confirmation of homozygous or compound heterozygous mutations known or predicted to cause PNP deficiency or already detected in a sibling affected with PNP deficiency. Related donors were tested for PNP mutations and PNP activity. Healthy family donors with heterozygous PNP mutations were permitted to donate. Participants or their legal guardians provided written informed consent to participate in this study via the EBMT for Europe and Primary Immune Deficiency Treatment Consortium (PIDTC) for Canada and the United States.

Data collection and definitions

Data were collected using specially designed case report forms and included information on the baseline disease-specific characteristics, including infectious, neurologic, and autoimmune symptoms, and laboratory data at clinical presentation and HSCT. The outcome analysis included information on conditioning chemotherapy,33-35 serotherapy, graft source and in vitro manipulation, post-HSCT immunosuppression, primary and secondary graft failure (GF), the need for a second HSCT or cellular therapy (CT; donor lymphocyte infusion [DLI], stem cell boost [SCB] infusion), incidence of acute and chronic graft-versus-host disease (GVHD), and infectious and autoimmune complications (supplemental Material and methods, available on the Blood website).

At the last follow-up visit (FU), data analysis included overall survival (OS; days alive after HSCT), event-free survival (EFS; days alive without a second HSCT or clinical relapse),33 incidence of acute (Glucksberg score) and chronic GVHD (limited, extensive), the percentage of donor chimerism (DC) in the whole blood and/or in sorted myeloid (CD15+neutrophils/CD14+monocytes), T- (CD3+), and B-cell (CD19+) compartments, independence of immunoglobulin G replacement therapy, and, if available, PNP enzyme activity in blood and/or urinary purine metabolite excretion (uric acid, deoxyguanosine triphosphate, guanosine, inosine, deoxyguanosine, and deoxyinosine) according to established local laboratory methods.

At the final FU, the study physicians assessed the neurologic outcomes using a new combination of standardized and validated scores,36-40 including cognition (scoring range, 0-3), hearing (0-3), interaction (0-4), movement (0-4), and occupation (0-3), referred to as the CHIMO score (maximum: 17). Karnofsky and/or Lansky scores were also recorded (supplemental Tables 1 and 2).

Statistical analysis

Data on the clinical and laboratory characteristics were collected at the time of initial diagnosis, at HSCT, and at the last FU (at least 1 year after HSCT). Categorical variables were compared using Fisher exact test and continuous variables were compared using the Mann-Whitney U test. Correlations were calculated using Spearman's rank correlation coefficient. For survival, Kaplan-Meier estimates were used for survival and log-rank tests were used for comparison. Data were censored at the date of last FU for surviving patients. Confidence intervals (CIs) were calculated using a log-log transformation. Kaplan-Meier curve comparisons between groups were performed using the log-rank test. The Cox proportional hazards model was used for univariate analysis of the risk factors associated with EFS and OS. For the Cox proportional hazard regression and depiction, the coxph and ggforest functions were used in R, and to determine the optimal cutoff timepoints in the survival analysis, the surv_cutpoint function in the survminer package in R was applied. A multivariate analysis was not performed because of the small sample size. All analyses were performed using RStudio version 2024.09.0, packages dplyr, forestplot, ggthemes, knitr, survminer, survival, tidyquant, and tidyverse, and Microsoft Excel and Graphpad Prism V9 and 10.

Institutional review board approval was obtained for participation in the study on behalf of the EBMT IEWP.

Patient characteristics

PNP deficiency was diagnosed at a median age of 17.5 months (0-186), including 6 asymptomatic patients (13%) who were diagnosed at birth based on family history. Another patient with a family history of CID was diagnosed at the onset of neurologic symptoms. Allogeneic HSCT was performed at a median age of 25.5 months (2-192). Five of the 6 perinatally diagnosed patients were transplanted before the onset of symptoms. Most patients fulfilled the criteria for leaky T cell-negative, B cell-positive, natural killer cell-positive severe combined immunodeficiency (T-B+NK+SCID) or CID41 (Table 2), and none had reported Omenn syndrome or the presence of maternal lymphocytes. Infectious symptoms without neurologic compromise (I+) were presenting symptoms in 41% (17/41) of patients, neurologic symptoms without signs of immunodeficiency (N+) were the presenting symptoms in 39% (16/41), and combined infectious and neurologic symptoms (I+/N+) were the presenting symptoms in 15% (6/41). AID+ was a presenting symptom in 5% (2/41) of patients, either with or without infectious symptoms. Patients with only 1 type of initial clinical manifestations (I+ or N+ or AID+) presented earlier than patients with a combined occurrence of different types of initial clinical manifestations. The median age at first presentation of I+, N+, AID+, and combined I+/N+ was 5, 8, 13.5, and 15 months, respectively (Table 1). The overall distribution of all N+, I+, and A+ symptoms over time is shown in Figure 1A.

Table 1.

Clinical presentation

IDSexInitial neurologic findingsInitial I+ and AID+ symptomsType of initial presentationI+ present age, moN+ present age, moAID+ present age, moPNP diagnose age, moHSCT at age, mo
1  Tremor, ataxia, DL RTI, GI (Giardia30  30 35 
DL in motor skills None, VZV (treated with acyclovir) 15  15 26 
DL RTI, OM, diarrhea 30  47 51 
4  DL, microcephalus/brachycephalus, encephalitis/meningitis (at 2 y): subsequent hydrocephalus, ataxia, spastic paresis of upper limbs Diarrhea RTI, OM 24  24 35 
DL, generalized hypotonia Diarrhea, VZV/pneumonia, OM  14 
Ataxia neck/trunk, choreatic movements, polymicrogyria (like sibling not suffering from PNP) RTI  10 
DL, spastic paresis Family history (brother had CID)  12  12 27 
DL in motor skills, mild truncal hypotonia Severe VZV 11 12  12 16 
DL RTI, GI, thrush 11  11 14 
10 DL, spastic paraparesis, MRI: global atrophy, corpus callosum atrophy RTI, VZV (pneumonia/myocarditis) 23  23 25 
11 Hypotonia, insufficient head control Severe VZV, septicemia  
12 Motoric coordination disorder, spastic paresis RTI, impetigo, GI (RV) 12 24  71 72 
13 Ataxia (MRI: normal), after first HSCT ability to walk; deterioration before second HSCT, motoric DL Thrush, RTI (RSV), GI (RV), AIHA 20 20 22 24 
14 Lower limb/truncal hypotonia; spastic paresis; motor DL with impaired balance OM, RTI, severe VZV, zoster 20  47 
15 SNHL unrelated to PNP (other cause; a cochlear implant); mild gross motor DL, consanguinity AIHA, ITP, URT, RTI/bronchiectasis; intussusception A/I 23 None 23 23 39 
16 Normal Family history (newborn diagnosis) None  None  
17 Generalized hypotonia, DL RTI, OM; CMV (including CNS) I/N 15 15  15 39 
18 DL of motor and speech function AIHA, ITP, pyelonephritis; sepsis I/N 18 18  18 25 
19 Spastic paresis, mild spastic dysplasia, DL AIN, RTI I/N 19 19 19 19 22 
20 Cerebral palsy and spastic paraparesis, DL RTI, VZV, bronchiectasis, thrush 72  72 168 
21 Ataxia, spastic paraparesis, mild DL RTI, thrush, dermatitis 18  26 28 
22 Normal Thrush, GI (Campylobacter) (sibling died from EBV/lymphoma) 24 None  24 25 
23 DL, motor retardation with spastic paresis of lower extremities, progressed to spastic tetraparesis RTI, OM I/N 12 12  12 42 
24 Normal AIHA, ITP None 12 
25  Hemiplegia, gross motor DL; MRI brain: delayed myelination/thin corpus callosum; bilateral lower motor neuron signs in both lower limbs RTI, paronychia, AIN, CMV/EBV 11 11 31 
26 Upper motor signs at HSCT; motor DL present with asymmetry of tone increased in lower limbs and posturing of upper limbs/head Family history: sibling had severe neurologic disease and died without HSCT (newborn diagnosis)   
27 DL, atactic, unstable gait, motor DL; after severe VZV; central motor paralysis AIHA; severe VZV 18 12 18 18 36 
28 Normal Severe VZV 36 None  38 40 
29  Mild DL, hypotonia Recurrent thrush 14 10  21 22 
30 Severe DL with no sitting/crawling/running RTI, tracheomalacia 12  12 20 
31 Generalized hypotonia
Ataxia (noted after general anesthesia). Unsafe swallow 
RTI (influenza A). GI (NV, SP, RV) 16  18 
32 Choreoathetosis, motor DL VZV (at 48 mo of age), DLBCL (EBV-related at 186 mo of age) 48 20  186 192 
33 Ataxia Thrush 12 14  18 43 
34 Stiffness both lower extremities and ankles; mild, nonprogressive gait difficulty Atopic dermatitis asthma; sinusitis, vaccine related VZV (via sibling) 48 12  108 119 
35 Motor DL, ataxia, spastic diplegia; MRI: normal Asthma, cow's milk/peanut allergy, vaccine related VZV, RTI 18 18  84 92 
36  Hypotonia, motor and speech delay OM, thrush, zoster (VZV); CMV/ADV 48  48 52 
37 Normal Family history (newborn diagnosis) None  None  
38  Normal Family history (newborn diagnosis) None  None  
39  Grossly normal examination; ataxia, hemi spastic paresis; motor delay RTI, AIHA, dermatitis, zoster (VZV) 11 11 35 41 
40  Motor DL, axial hypotonia Family history (patient 39); cleft palate; OM with conductive hearing loss I/N 12 12  17 26 
41  Normal Family history (sibling of patient 39/40) (antenatal diagnosis)  None  None  
42 Generalized hypotonia RTI (ADV/CV) diarrhea, thrush  11 12 
43 Motor DL, generalized hypotonia Aphthous stomatitis, EBV-LGN (CNS, kidney, spleen, liver) 17  17 22 
44  Spastic diplegia, DL MAS and arthritis  31 33 37 
45 Motor DL, spastic tendency, ataxia, hypotonia Vaccine related VZV I/N 21  21 23 
46 Normal Family history (newborn diagnosis) None  None  
IDSexInitial neurologic findingsInitial I+ and AID+ symptomsType of initial presentationI+ present age, moN+ present age, moAID+ present age, moPNP diagnose age, moHSCT at age, mo
1  Tremor, ataxia, DL RTI, GI (Giardia30  30 35 
DL in motor skills None, VZV (treated with acyclovir) 15  15 26 
DL RTI, OM, diarrhea 30  47 51 
4  DL, microcephalus/brachycephalus, encephalitis/meningitis (at 2 y): subsequent hydrocephalus, ataxia, spastic paresis of upper limbs Diarrhea RTI, OM 24  24 35 
DL, generalized hypotonia Diarrhea, VZV/pneumonia, OM  14 
Ataxia neck/trunk, choreatic movements, polymicrogyria (like sibling not suffering from PNP) RTI  10 
DL, spastic paresis Family history (brother had CID)  12  12 27 
DL in motor skills, mild truncal hypotonia Severe VZV 11 12  12 16 
DL RTI, GI, thrush 11  11 14 
10 DL, spastic paraparesis, MRI: global atrophy, corpus callosum atrophy RTI, VZV (pneumonia/myocarditis) 23  23 25 
11 Hypotonia, insufficient head control Severe VZV, septicemia  
12 Motoric coordination disorder, spastic paresis RTI, impetigo, GI (RV) 12 24  71 72 
13 Ataxia (MRI: normal), after first HSCT ability to walk; deterioration before second HSCT, motoric DL Thrush, RTI (RSV), GI (RV), AIHA 20 20 22 24 
14 Lower limb/truncal hypotonia; spastic paresis; motor DL with impaired balance OM, RTI, severe VZV, zoster 20  47 
15 SNHL unrelated to PNP (other cause; a cochlear implant); mild gross motor DL, consanguinity AIHA, ITP, URT, RTI/bronchiectasis; intussusception A/I 23 None 23 23 39 
16 Normal Family history (newborn diagnosis) None  None  
17 Generalized hypotonia, DL RTI, OM; CMV (including CNS) I/N 15 15  15 39 
18 DL of motor and speech function AIHA, ITP, pyelonephritis; sepsis I/N 18 18  18 25 
19 Spastic paresis, mild spastic dysplasia, DL AIN, RTI I/N 19 19 19 19 22 
20 Cerebral palsy and spastic paraparesis, DL RTI, VZV, bronchiectasis, thrush 72  72 168 
21 Ataxia, spastic paraparesis, mild DL RTI, thrush, dermatitis 18  26 28 
22 Normal Thrush, GI (Campylobacter) (sibling died from EBV/lymphoma) 24 None  24 25 
23 DL, motor retardation with spastic paresis of lower extremities, progressed to spastic tetraparesis RTI, OM I/N 12 12  12 42 
24 Normal AIHA, ITP None 12 
25  Hemiplegia, gross motor DL; MRI brain: delayed myelination/thin corpus callosum; bilateral lower motor neuron signs in both lower limbs RTI, paronychia, AIN, CMV/EBV 11 11 31 
26 Upper motor signs at HSCT; motor DL present with asymmetry of tone increased in lower limbs and posturing of upper limbs/head Family history: sibling had severe neurologic disease and died without HSCT (newborn diagnosis)   
27 DL, atactic, unstable gait, motor DL; after severe VZV; central motor paralysis AIHA; severe VZV 18 12 18 18 36 
28 Normal Severe VZV 36 None  38 40 
29  Mild DL, hypotonia Recurrent thrush 14 10  21 22 
30 Severe DL with no sitting/crawling/running RTI, tracheomalacia 12  12 20 
31 Generalized hypotonia
Ataxia (noted after general anesthesia). Unsafe swallow 
RTI (influenza A). GI (NV, SP, RV) 16  18 
32 Choreoathetosis, motor DL VZV (at 48 mo of age), DLBCL (EBV-related at 186 mo of age) 48 20  186 192 
33 Ataxia Thrush 12 14  18 43 
34 Stiffness both lower extremities and ankles; mild, nonprogressive gait difficulty Atopic dermatitis asthma; sinusitis, vaccine related VZV (via sibling) 48 12  108 119 
35 Motor DL, ataxia, spastic diplegia; MRI: normal Asthma, cow's milk/peanut allergy, vaccine related VZV, RTI 18 18  84 92 
36  Hypotonia, motor and speech delay OM, thrush, zoster (VZV); CMV/ADV 48  48 52 
37 Normal Family history (newborn diagnosis) None  None  
38  Normal Family history (newborn diagnosis) None  None  
39  Grossly normal examination; ataxia, hemi spastic paresis; motor delay RTI, AIHA, dermatitis, zoster (VZV) 11 11 35 41 
40  Motor DL, axial hypotonia Family history (patient 39); cleft palate; OM with conductive hearing loss I/N 12 12  17 26 
41  Normal Family history (sibling of patient 39/40) (antenatal diagnosis)  None  None  
42 Generalized hypotonia RTI (ADV/CV) diarrhea, thrush  11 12 
43 Motor DL, generalized hypotonia Aphthous stomatitis, EBV-LGN (CNS, kidney, spleen, liver) 17  17 22 
44  Spastic diplegia, DL MAS and arthritis  31 33 37 
45 Motor DL, spastic tendency, ataxia, hypotonia Vaccine related VZV I/N 21  21 23 
46 Normal Family history (newborn diagnosis) None  None  

ADV, adenovirus; CV, coronavirus; DL, developmental delay; DLBCL, diffuse large B-cell lymphoma; LGN, lymphoid granulomatosis; GI, gastrointestinal infection; I+, immunodeficiency; MAS, macrophage activation syndrome; N+, neurologic abnormalities; OM, otitis media; NV, norovirus; RV, rotavirus; RTI, respiratory tract infection; SP, sapovirus; URT, urinary tract infection.

Deceased patient.

Erythrocyte exchange transfusion after birth.

Siblings of 1 family.

Figure 1.

Age and clinical manifestations of the cohort. (A) Distribution of the age at first symptom onset (x-axis) across different initial clinical manifestations (y-axis: neurologic, infectious, or autoimmune). (B) Percentage of patients who presented with various clinical features over the whole period of study until HSCT. MAS, macrophage activation syndrome; M.Still-like, Morbus Still-like.

Figure 1.

Age and clinical manifestations of the cohort. (A) Distribution of the age at first symptom onset (x-axis) across different initial clinical manifestations (y-axis: neurologic, infectious, or autoimmune). (B) Percentage of patients who presented with various clinical features over the whole period of study until HSCT. MAS, macrophage activation syndrome; M.Still-like, Morbus Still-like.

Close modal

All 46 patients (20 male, 26 female) had low (<5%) or no PNP enzyme activity in erythrocytes and/or genetic mutations compatible with the diagnosis of severe PNP deficiency. Four patients who were diagnosed at birth underwent ET.30 A total of 23 patients (50%) had available PNP genotyping, which revealed compound heterozygous (n = 10) and homozygous (n = 13) variants with exon 2 and c.172C>T p.(Arg58∗) being the most common variant (n = 2 homozygous and n = 4 heterozygous),15,42 followed by a homozygous intronic variant c.286-18G>A in 5 patients15,43 (Table 2).

Table 2.

Immunologic phenotype, pretransplantation erythrocyte PNP enzyme activity, and mutations of the PNP gene

Patient IDCD3
T (per μL)
CD4/45RA T (per μL)B (per μL)NK (per μL)ANC (per μL)Eos (per μL)IgG (g/L)IgA (g/L)IgA
(g/L)
IgM (g/L)Erythrocyte PNP activity Mutation
1  N.a. 33  1850 56 11 0.75 0.75 0.82 Undetectable  
96 N.a. 61 233 4730 7.8 0.93 0.93 2.23 Undetectable  
65 N.a. 24 250 1100 100 18.8 1.8 1.8 1.15 Undetectable  
4  336 N.a. 25 274 350 775 9.9 0.57 0.57 1.99 Undetectable  
230 N.a. 32 750 3420 340 8.3 1.29 1.29 1.58 Undetectable  
48 N.a. 30 43 3600 90 8.5 0.47 0.47 1.53 Undetectable  
37 48 14 132 300 5.5 0.73 0.73 0.14 Undetectable Homozygous intronic variant c286-18G>A 
65 65 88 216 4800 100 9.8 1.07 1.07 1.08 Undetectable Homozygous intronic variant c286-18G>A 
444 444 48 60 6700 200 10.4 1.07 1.07 1.18 Undetectable Nonsense c.172C>T (R58X) 
10 28 N.a. 40 220 810 90 7.1 0.58 0.58 1.15 Undetectable  
11 1131 N.a. 48 320 7128 648 1.88 0.71 0.71 0.5 Reduced  
12 1160 N.a. 420 139 4510 896 786 0.95 0.95 0.85 Undetectable  
13 13 N.a. 57 110 3200 150 24.5  <0.2 0.2 1.1 Undetectable  
14 92 67 260 940 40 13.3§  0.53 0.53 1.36 Reduced  
15 20 30 40 700 70 9.33 0.52 0.52 0.4 Undetectable  
16ǁ  658 N.a. 102  212 64 0.3 N.a. 0.07 0.23 Undetectable  
17 12 N.a. 52 3100 200 <0.3 0.04 0.04 <0.05 Reduced Homozygous c.383A>G 
18 348 N.a. 76 242 250 650 16.4 0.53 0.53 1,8 Undetectable  
19 120 50 60 150 780 6.7 0.07 0.07 n/a Undetectable  
20 207 N.a. 100 205 5170 110 7.13 0.5 0.5 1.83 Reduced Homozygous missense c.117A>T 
21 145 N.a. 29 189 3700 400 3.42 0.09 0.09 0.42 Undetectable  
22 59 N.a. 25 330 1190 275 3.4 0.06 0.06 0.04 Undetectable  
23 99 26 39 2542 101 7.88 0.078 0.078 1.12 Reduced Compound-heterozygous
Exon 2 c.58CGA>TGA
Exon 3 c.98GAA>TAA 
24 172 38/0 37 159 2120 180 8.58 0.059 0.059 2.08 Reduced Compound heterozygous
Exon2 c.172C>T p.Arg58Stop
Exon 4 c.389T>C p.Met130Thr 
25  130 150 170 1190 410 13.3 0.53 0.53 1.36 Undetectable  
26ǁ  50 30  5180 370 n.d.  0.08 0.09 Reduced  
27 70 N.a. 50 190 3687 209 12.2 0.9 0.9 1.7 Undetectable  
28 117 N.a. 75 158 2003 940 5.9 0.98 0.98 0.75 Reduced  
29  80 47 53 118 484 66 0.2 4.2 Undetectable Compound heterozygous
Exon 2 Arg24Termc. 70 C>T
Exon 3 Glu89. Lys c.265G>A 
30 43 N.a. 24 156 5200 190 10 0.3 0.3 0.9 Undetectable  
31 10 100 70 760 120 7.94 0.66 0.66 0.41 Reduced Homozygous c.383A>G, p.D128G 
32 250 10 57 157   11.5  0.71 0.38 Undetectable c.487T>C, p.Ser163Pro 
33 369 35 101 93 2700 1.67 0.04 0.04 0.18 Undetectable  
34 19 15 26 6300 0.2 8.99 0.96 0.96 41 Reduced Compound heterozygous c.234R>P; c.212L>P 
35 170 15 161 55 6400 0.1 8.29 0.88 0.88 63 Not done Compound heterozygous c.234R>P; c.212L>P 
36  158 72 531 4000 0.14 11.8 1.09 1.09 133 Undetectable Compound heterozygous 
37ǁ  1299 185 143  5150 176 11.85  N.a. 0.04 0.03 Reduced Homozygous c.286-18G>A 
38ǁ  511 239 23  9460 120 11.2  N.a. 0.04 0.05 Reduced Homozygous c.286-18G>A 
39 60 40 80 1400 200 8.82 0.75 0.75 1.85 Undetectable c.172C>T, p(ARG58∗); c.701G>C, p.(Arg234Pro) 
40 90 14 120 N.a. 3000 1600 10.35 N.a. 0.42 1.29 Undetectable c.172C>T, p(ARG58∗); c.701G>C, p.(Arg234Pro) 
41ǁ  2510 1711 320 N.a. 6200 400 2.05 N.a. 0.06 0.7 Undetectable c.172C>T, p(ARG58∗); c.701G>C, p.(Arg234Pro) 
42 34 22/0 165 290 3710 180 10.5 0.06 0.06 1.07 Undetectable Homozygous c.59A>C(p.H20P)(p.His20Pro) 
43 36 N.a. 88 372 1420 510 2.35 <0.22 <0.22 0.37 ND Homozygous c.172C>T 
44  38 N.a. 59 22 400 9.56  0.43 0.33 Undetectable Homozygous c.286-2A>T 
45 170 19 30 160 5.49 0.04 1.1 <0,1 <0,1 1.28 Reduced Homozygous c.265G>A, p.Glu89Lys 
46ǁ  830 103 50 260 3.43 0.06 5.17 0.16 0.16 0.33 Undetectable Homozygous c.244C>T, p.GLN82∗ 
Patient IDCD3
T (per μL)
CD4/45RA T (per μL)B (per μL)NK (per μL)ANC (per μL)Eos (per μL)IgG (g/L)IgA (g/L)IgA
(g/L)
IgM (g/L)Erythrocyte PNP activity Mutation
1  N.a. 33  1850 56 11 0.75 0.75 0.82 Undetectable  
96 N.a. 61 233 4730 7.8 0.93 0.93 2.23 Undetectable  
65 N.a. 24 250 1100 100 18.8 1.8 1.8 1.15 Undetectable  
4  336 N.a. 25 274 350 775 9.9 0.57 0.57 1.99 Undetectable  
230 N.a. 32 750 3420 340 8.3 1.29 1.29 1.58 Undetectable  
48 N.a. 30 43 3600 90 8.5 0.47 0.47 1.53 Undetectable  
37 48 14 132 300 5.5 0.73 0.73 0.14 Undetectable Homozygous intronic variant c286-18G>A 
65 65 88 216 4800 100 9.8 1.07 1.07 1.08 Undetectable Homozygous intronic variant c286-18G>A 
444 444 48 60 6700 200 10.4 1.07 1.07 1.18 Undetectable Nonsense c.172C>T (R58X) 
10 28 N.a. 40 220 810 90 7.1 0.58 0.58 1.15 Undetectable  
11 1131 N.a. 48 320 7128 648 1.88 0.71 0.71 0.5 Reduced  
12 1160 N.a. 420 139 4510 896 786 0.95 0.95 0.85 Undetectable  
13 13 N.a. 57 110 3200 150 24.5  <0.2 0.2 1.1 Undetectable  
14 92 67 260 940 40 13.3§  0.53 0.53 1.36 Reduced  
15 20 30 40 700 70 9.33 0.52 0.52 0.4 Undetectable  
16ǁ  658 N.a. 102  212 64 0.3 N.a. 0.07 0.23 Undetectable  
17 12 N.a. 52 3100 200 <0.3 0.04 0.04 <0.05 Reduced Homozygous c.383A>G 
18 348 N.a. 76 242 250 650 16.4 0.53 0.53 1,8 Undetectable  
19 120 50 60 150 780 6.7 0.07 0.07 n/a Undetectable  
20 207 N.a. 100 205 5170 110 7.13 0.5 0.5 1.83 Reduced Homozygous missense c.117A>T 
21 145 N.a. 29 189 3700 400 3.42 0.09 0.09 0.42 Undetectable  
22 59 N.a. 25 330 1190 275 3.4 0.06 0.06 0.04 Undetectable  
23 99 26 39 2542 101 7.88 0.078 0.078 1.12 Reduced Compound-heterozygous
Exon 2 c.58CGA>TGA
Exon 3 c.98GAA>TAA 
24 172 38/0 37 159 2120 180 8.58 0.059 0.059 2.08 Reduced Compound heterozygous
Exon2 c.172C>T p.Arg58Stop
Exon 4 c.389T>C p.Met130Thr 
25  130 150 170 1190 410 13.3 0.53 0.53 1.36 Undetectable  
26ǁ  50 30  5180 370 n.d.  0.08 0.09 Reduced  
27 70 N.a. 50 190 3687 209 12.2 0.9 0.9 1.7 Undetectable  
28 117 N.a. 75 158 2003 940 5.9 0.98 0.98 0.75 Reduced  
29  80 47 53 118 484 66 0.2 4.2 Undetectable Compound heterozygous
Exon 2 Arg24Termc. 70 C>T
Exon 3 Glu89. Lys c.265G>A 
30 43 N.a. 24 156 5200 190 10 0.3 0.3 0.9 Undetectable  
31 10 100 70 760 120 7.94 0.66 0.66 0.41 Reduced Homozygous c.383A>G, p.D128G 
32 250 10 57 157   11.5  0.71 0.38 Undetectable c.487T>C, p.Ser163Pro 
33 369 35 101 93 2700 1.67 0.04 0.04 0.18 Undetectable  
34 19 15 26 6300 0.2 8.99 0.96 0.96 41 Reduced Compound heterozygous c.234R>P; c.212L>P 
35 170 15 161 55 6400 0.1 8.29 0.88 0.88 63 Not done Compound heterozygous c.234R>P; c.212L>P 
36  158 72 531 4000 0.14 11.8 1.09 1.09 133 Undetectable Compound heterozygous 
37ǁ  1299 185 143  5150 176 11.85  N.a. 0.04 0.03 Reduced Homozygous c.286-18G>A 
38ǁ  511 239 23  9460 120 11.2  N.a. 0.04 0.05 Reduced Homozygous c.286-18G>A 
39 60 40 80 1400 200 8.82 0.75 0.75 1.85 Undetectable c.172C>T, p(ARG58∗); c.701G>C, p.(Arg234Pro) 
40 90 14 120 N.a. 3000 1600 10.35 N.a. 0.42 1.29 Undetectable c.172C>T, p(ARG58∗); c.701G>C, p.(Arg234Pro) 
41ǁ  2510 1711 320 N.a. 6200 400 2.05 N.a. 0.06 0.7 Undetectable c.172C>T, p(ARG58∗); c.701G>C, p.(Arg234Pro) 
42 34 22/0 165 290 3710 180 10.5 0.06 0.06 1.07 Undetectable Homozygous c.59A>C(p.H20P)(p.His20Pro) 
43 36 N.a. 88 372 1420 510 2.35 <0.22 <0.22 0.37 ND Homozygous c.172C>T 
44  38 N.a. 59 22 400 9.56  0.43 0.33 Undetectable Homozygous c.286-2A>T 
45 170 19 30 160 5.49 0.04 1.1 <0,1 <0,1 1.28 Reduced Homozygous c.265G>A, p.Glu89Lys 
46ǁ  830 103 50 260 3.43 0.06 5.17 0.16 0.16 0.33 Undetectable Homozygous c.244C>T, p.GLN82∗ 

Immunologic parameters at diagnosis.

ANC, absolute neutrophil count; Eos, eosinophils; ID, identifier; Ig, immunoglobulin; N.a., not available; NK, natural killer cells.

Untransfused patients (according to local laboratory normal ranges and SI units).

Deceased patient.

Monoclonal IgG kappa.

§

On intravenous immunoglobulin replacement therapy.

ǁ

Neonatal diagnosis owing to family history (patients 37, 38, 41, and 46 with erythrocyte exchange transfusions after birth).

Maternal IgG.

In patients with symptoms, primary immunodeficiency mainly manifested as recurrent bacterial respiratory tract infections (33/41; 80%) and viral infections (22/41; 54%), mainly by varicella zoster virus (VZV) (15/41; 37%), which caused encephalitis, myocarditis, pneumonitis, shingles (12/41; 29%), or postvaccination manifestations (3/41; 7%). Symptomatic infections with cytomegalovirus (CMV; 3/41; 7%), Epstein-Barr virus (EBV; 2/41; 5%), and herpes simplex virus (HSV; 1/41; 2.4%) were less common. Fungal infections at presentation consisted primarily of mucosal Candida-induced thrush (9/41; 22%).

Neurologic manifestations before HSCT were primarily developmental delay (33/41; 80%), followed by spastic paresis (n = 17; 41%), muscular hypotonia (n = 14; 34%), ataxia (n = 11; 27%), tremor/chorea (n = 2; 5%), and speech delay (n = 3; 7%). Other neurologic findings included polymicrogyria (patient 6), and sensorineural hearing loss (SNHL) (patient 15). Siblings of the latter patients had polymicrogyria or SNHL without evidence of a PNP deficiency.

The rate of patients with neurologic symptoms/developmental delay increased to 88% (36/41) overall at the time of HSCT, including 6 patients with central nervous system (CNS) infections and severe systemic viral infections caused by VZV and CMV (patients 4, 14, 17, 20, 27, and 28) and, in addition, 1 patient with EBV-lymphoid granulomatosis (patient 43)

Before HSCT, 19.5% (8/41) of patients developed AID, including Evans syndrome (autoimmune hemolytic anemia [AIHA]/immune thrombocytopenia [ITP]) in 7% (3/41), AIHA in 7% (3/41), AIN in 5% (2/41), and macrophage activation syndrome with polyarthritis in 2.5% (1/41).

One adolescent patient (pat. 32) developed an EBV-driven diffuse large B-cell lymphoma (Table 1; Figure 1).

Transplantation procedures, GF, and CTs

A total of 46 patients received a primary HSCT after conditioning with reduced-intensity conditioning (RIC; 15/46; 33%) and myeloablative conditioning (MAC; 29/46; 63%) or with no conditioning (2/46; 4%). Donors included human leukocyte antigen (HLA)–matched family (13/46; including 1 umbilical cord blood [UCB]), haploidentical family (8/46), matched unrelated (18/46; 15/46 HLA-10/10, 3/46 HLA-9/10) and unrelated UCB donors (7/46; 3/46 HLA 6/6, 3/46 5/6 and 1/46 4/6 match).

The graft sources included bone marrow (22/46; 48%), peripheral blood stem cells (16/46; 35%), and UCB (8/46; 17%). For GVHD and rejection prophylaxis, 67% (31/46) patients received in vivo T-cell depletion with antithymocyte globulin (ATG), including rabbit ATG (7/46; 15%), rabbit anti–T-lymphocyte globulin (4/46; 9%), horse ATG (1/46; 2%), and with alemtuzumab (19/46; 41%) or posttransplant cyclophosphamide (2/46; 4%). No serotherapy was given in 35% (16/46) of patients. In vitro graft manipulations, including T-cell receptor (TCR) α-β/CD19 depletion (2/46) and CD34 selection (1/46), were performed in 7% (3/46) of patients.

CTs included 5 hematopoietic SCBs (4/5, without T-cell depletion; 1/5 with CD34 selection), 3 mesenchymal stem cell infusions, and 4 DLIs (1/4 with CD45RA depletion), which were administered between 47 and 240 days after the first HSCT (Table 3).

Table 3.

HSCT characteristics and complications

IDAge at HSCT (mo)DonorHLAGraftT-cell depletion Conditioning SerotherapyGVHD prophylaxisAcute
GVHD
Chronic GVHDPost-HSCT
CT
Outcome (mo/d after HSCT)Complications >HSCTAID >HSCT
1  35 MMFD 3/6 BM Yes Bu 16
Cy 200
TT 20 (MAC) 
None None NA  Died (d+49) ADV  
26 MFD 6/6 BM No Bu 20
Flu 200 (MAC) 
None CSA No No  Alive (mo+156)   
51 MFD 6/6 BM No Bu 16
Flu 120 (MAC) 
None CSA Yes  Alive (mo+125)   
4  35 MUD 10/10 BM No Bu 19.2
Flu 160
Cy 120 (MAC) 
None CSA/MTX Yes  Died (mo+33) Sepsis/meningitis (chronic extensive GVHD)  
14 MUD 10/10 BM No Bu 19.2
Flu 160
Cy 120 (MAC) 
None CSA/MTX No No  Alive (mo+84)   
10 MMFD 3/6 PBSC Yes Bu 16
Flu 160
TT 10 (MAC) 
None None No No  Alive (mo+70)   
27 MFD 6/6 BM No None None CSA No No  Alive (mo+221) Disseminated BCG
Psoas abscess 
AIHA 
16 MFD 6/6 BM No Bu 20
Cy 200 (MAC) 
None CSA No No  Alive (mo+151)   
14 MFD 6/6 BM No Bu 16
Flu 160 (MAC) 
None CSA/MTX No No  Alive (mo+114)   
10 25 MFD 6/6 BM No Flu 150
Mel 140 (RIC) 
ATG-G 20 CSA Yes  Alive (mo+161)   
11 MFD 6/6 BM No Flu 150
Mel 140 (RIC) 
ATG-G 20 CSA Yes DLI (d+73) Alive (mo+98) RTI Klebsiella, pancytopenia  
12 72 MUD 10/10 PBSC No Bu 12.8
Cy 120 (MAC) 
ATG-G 40 CSA No No  Alive (mo+126)   
13 20 MMFD 4/6 PBSC Yes
CD34+pos 
Flu 150
Mel 140 (RIC) 
ATG-T 20 None No 2nd HSCT (mo+14) Alive (mo+260)  AIHA§
ITP§  
14 47 MUD 10/10 BM No Bu 16
Cy 200 (MAC) 
Alemt. 1 CSA/MTX No  Alive (mo+192) VZV (zoster)  
15 39 MFD 6/6 PBSC No Flu 150
Mel 140 (RIC) 
Alemt. 1 CSA/MMF No  Alive (mo+137) Pneumatosis intestinalis  
16 MUD 10/10 BM No Bu 16
Cy 200 (MAC) 
Alemt. 0.6 CSA/MTX No SCB (mo+9) Alive (mo+240) VOD, pneumonitis, nephritis AIHA§
Alopecia totalis§  
17 39 MFD 10/10 PBSC No Flu 150
Mel 140 (RIC) 
Alemt. 1 CSA/ MMF No  Alive (mo+65)   
18 25 MFD 6/6 BM No Bu 16
Flu 160 (MAC) 
None CSA/MTX/ rituximab No No  Alive (mo+87) VOD, pneumonitis  
19 22 MUD 10/10 PBSC No Flu 150
Mel 140 (RIC) 
Alemt. 1 CSA No No 2nd HSCT (mo+41) Alive (mo+62)   
20 168 MUD 10/10 PBSC No Flu 150
Mel 140 (RIC) 
ATG-T 10 CSA/ MMF No No  Alive (mo+28)   
21 28 UCB 5/6 UCB No Treo 42
Flu 150 (RIC) 
Alemt. 0.3 CSA/ MMF No Yes  Alive (mo+20)   
22 25 MFD 10/10 BM No Bu 16
Cy 200 (MAC) 
None CSA/ MTX Yes  Alive (mo+125)   
23 42 MFD 6/6 BM No Treo 42
Flu 160
TT 8 (MAC) 
None CSA/MTX No No  Alive (mo+22)   
24 12 MUD 10/10 BM No Treo 42
Flu 160 (RIC) 
ATG-G 45 CSA/MTX No No  Alive (mo+94)   
25  31 MUD 10/10 BM No Flu 150
Mel 140 (RIC) 
Alemt. 0.6 CSA/MMF NA SCB Died (mo+8) Acute relapsing GVHD (gut)  
26 MUD 9/10 PBSC Yes CD34+pos Treo 36
Flu 150 (RIC) 
Alemt. 1 CSA/MMF No  Alive (mo+72)   
27 36 MFD 6/6 UCB No Bu 16
Flu 150 (MAC) 
None CSA No No  Alive (mo+156) VZV (zoster)  
28 40 UCB 6/6 UCB No Bu 16
Cy 200 (MAC) 
None CSA/Pred No No  Alive (mo+96)   
29  22 UCB 10/10 UCB No Bu 16
Flu 140
Mel 70 (MAC) 
ATG-T 10 CSA/Pred No NA  Died (d+20) Neurologic decline  
30 20 MUD 10/10 BM No Bu cAUC 80 Flu 150 (MAC) ATG-T 10 CSA/MTX No No  Alive (mo+108) RTI (ADV, PIV3, metapneumovirus)  
31 18 MUD 10/10 PBSC No Mel 140
Flu 150 (RIC) 
Alemt. 1 CSA/MMF Yes  Alive (mo+24)   
32 192 MMFD 3/6 PBSC Yes TCRab/CD19 Treo 42
Flu 150
TT 10 (MAC) 
Alemt. 0.3 None No  Alive (mo+28) GI (ADV, NV)
RTI (Covid-19) 
 
33 43 UCB 5/6 UCB No Bu 16
Cy 200 (MAC) 
ATG-E 90 CSA/pred No Yes  Alive (mo+156)  AIHA§
ITP§
DM
Graves disease 
34 119 UCB 4/6 UCB No Flu 125
Mel 140 (RIC) 
Alemt. 2.3 Tacro MTX No No  Alive (mo+96)   
35 92 UCB 6/6 UCB No Flu 125
Mel 140 (RIC) 
Alemt. 2.4 Tacro/MTX   2nd HSCT (mo+5) Autologous recovery VZV (zoster)
RTI by EBV 
 
36  52 UCB 5/6 UCB No Flu 150
Mel 140
TT 7 (MAC) 
Alemt. 3.2 Tacro/MTX NA  Died (mo+8.5) ADV, CMV (acute relapsing GVHD)  
37 MMFD 7/10 BM No Bu cAUC 55
Cy 20
Flu 150 (RIC) 
Alemt. 0.4 PtCY d+3/+4 Tacro/MMF No No 2nd HSCT (mo+17) Alive (mo+80) EBV (rituximab)
RTI (Aspergillus
AIHA 
38 MUD 9/10 BM No Bu cAUC 79 Flu 160 (MAC) Alemt. 0.6 CSA/MMF No  Alive (mo+53) VOD  
39 41 MUD 10/10 PBSC No Bu 12
Flu 250 (MAC) 
Alemt. 0.6 CSA/MTX No No  Alive (mo+30) EBV+PTLD (rituximab)
GI (sapovirus)
Neisseria bacteremia 
 
40 26 MUD 9/10 PBSC No Bu 12
Flu 250 (MAC) 
Alemt. 0.6 CSA/MTX No  Alive (mo+22) EBV (rituximab)
RTI (rhinovirus/enterovirus/CV)
GI (sapovirus) 
 
41 MUD 10/10 PBSC No Bu12
Flu 250 (MAC) 
Alemt. 0.6 CSA/MTX No 2nd HSCT (mo+15)
(+SCB) 
Alive (mo+32) EBV (rituximab)
RTI (enterovirus/rhinovirus, ADV) 
 
42 12 MMFD 7/10 PBSC No None None PtCY d+3/+4 Tacro/MMF No No SCB (mo+3) Alive (mo+45)   
43 22 MMFD 6/10 PBSC Yes
TCRab/CD19 
Treo 42
Flu 150
Thio 10 (MAC) 
ATG-T 5 Tocilizumab
abatacept
rituximab 
No No CD45RA deplet. DLI (d+47, +81, +94) Alive (mo+63) RTI (HHV6, RSV)
GI (RV, HHV6, ADV)
Sepsis (Candida)
Disseminated BCG 
Arthritis 
44  37 MUD 10/10 BM No Bu cAUC 75
Flu 160 (MAC) 
ATG-T 7.5 CSA/MMF No NA  Died (d+15) MAS  
45 23 MMFD 5/10 PBSC Yes
TCRab/CD19 
Treo 42
Flu 150
TT 10 (MAC) 
ATG-G 30 MMF, pred, ruxolitinib, vedolizumab Yes, skin, 2 No  Alive (mo+12) EBV infection
GI NV
Zoster (VZV)
RTI (rhinovirus/enterovirus, BV) 
 
46 MUD 10/10 BM No Bu cAUC 79
Flu 180 (MAC) 
Alemt. 0.6 CSA/MMF No No  Alive (mo+85)   
IDAge at HSCT (mo)DonorHLAGraftT-cell depletion Conditioning SerotherapyGVHD prophylaxisAcute
GVHD
Chronic GVHDPost-HSCT
CT
Outcome (mo/d after HSCT)Complications >HSCTAID >HSCT
1  35 MMFD 3/6 BM Yes Bu 16
Cy 200
TT 20 (MAC) 
None None NA  Died (d+49) ADV  
26 MFD 6/6 BM No Bu 20
Flu 200 (MAC) 
None CSA No No  Alive (mo+156)   
51 MFD 6/6 BM No Bu 16
Flu 120 (MAC) 
None CSA Yes  Alive (mo+125)   
4  35 MUD 10/10 BM No Bu 19.2
Flu 160
Cy 120 (MAC) 
None CSA/MTX Yes  Died (mo+33) Sepsis/meningitis (chronic extensive GVHD)  
14 MUD 10/10 BM No Bu 19.2
Flu 160
Cy 120 (MAC) 
None CSA/MTX No No  Alive (mo+84)   
10 MMFD 3/6 PBSC Yes Bu 16
Flu 160
TT 10 (MAC) 
None None No No  Alive (mo+70)   
27 MFD 6/6 BM No None None CSA No No  Alive (mo+221) Disseminated BCG
Psoas abscess 
AIHA 
16 MFD 6/6 BM No Bu 20
Cy 200 (MAC) 
None CSA No No  Alive (mo+151)   
14 MFD 6/6 BM No Bu 16
Flu 160 (MAC) 
None CSA/MTX No No  Alive (mo+114)   
10 25 MFD 6/6 BM No Flu 150
Mel 140 (RIC) 
ATG-G 20 CSA Yes  Alive (mo+161)   
11 MFD 6/6 BM No Flu 150
Mel 140 (RIC) 
ATG-G 20 CSA Yes DLI (d+73) Alive (mo+98) RTI Klebsiella, pancytopenia  
12 72 MUD 10/10 PBSC No Bu 12.8
Cy 120 (MAC) 
ATG-G 40 CSA No No  Alive (mo+126)   
13 20 MMFD 4/6 PBSC Yes
CD34+pos 
Flu 150
Mel 140 (RIC) 
ATG-T 20 None No 2nd HSCT (mo+14) Alive (mo+260)  AIHA§
ITP§  
14 47 MUD 10/10 BM No Bu 16
Cy 200 (MAC) 
Alemt. 1 CSA/MTX No  Alive (mo+192) VZV (zoster)  
15 39 MFD 6/6 PBSC No Flu 150
Mel 140 (RIC) 
Alemt. 1 CSA/MMF No  Alive (mo+137) Pneumatosis intestinalis  
16 MUD 10/10 BM No Bu 16
Cy 200 (MAC) 
Alemt. 0.6 CSA/MTX No SCB (mo+9) Alive (mo+240) VOD, pneumonitis, nephritis AIHA§
Alopecia totalis§  
17 39 MFD 10/10 PBSC No Flu 150
Mel 140 (RIC) 
Alemt. 1 CSA/ MMF No  Alive (mo+65)   
18 25 MFD 6/6 BM No Bu 16
Flu 160 (MAC) 
None CSA/MTX/ rituximab No No  Alive (mo+87) VOD, pneumonitis  
19 22 MUD 10/10 PBSC No Flu 150
Mel 140 (RIC) 
Alemt. 1 CSA No No 2nd HSCT (mo+41) Alive (mo+62)   
20 168 MUD 10/10 PBSC No Flu 150
Mel 140 (RIC) 
ATG-T 10 CSA/ MMF No No  Alive (mo+28)   
21 28 UCB 5/6 UCB No Treo 42
Flu 150 (RIC) 
Alemt. 0.3 CSA/ MMF No Yes  Alive (mo+20)   
22 25 MFD 10/10 BM No Bu 16
Cy 200 (MAC) 
None CSA/ MTX Yes  Alive (mo+125)   
23 42 MFD 6/6 BM No Treo 42
Flu 160
TT 8 (MAC) 
None CSA/MTX No No  Alive (mo+22)   
24 12 MUD 10/10 BM No Treo 42
Flu 160 (RIC) 
ATG-G 45 CSA/MTX No No  Alive (mo+94)   
25  31 MUD 10/10 BM No Flu 150
Mel 140 (RIC) 
Alemt. 0.6 CSA/MMF NA SCB Died (mo+8) Acute relapsing GVHD (gut)  
26 MUD 9/10 PBSC Yes CD34+pos Treo 36
Flu 150 (RIC) 
Alemt. 1 CSA/MMF No  Alive (mo+72)   
27 36 MFD 6/6 UCB No Bu 16
Flu 150 (MAC) 
None CSA No No  Alive (mo+156) VZV (zoster)  
28 40 UCB 6/6 UCB No Bu 16
Cy 200 (MAC) 
None CSA/Pred No No  Alive (mo+96)   
29  22 UCB 10/10 UCB No Bu 16
Flu 140
Mel 70 (MAC) 
ATG-T 10 CSA/Pred No NA  Died (d+20) Neurologic decline  
30 20 MUD 10/10 BM No Bu cAUC 80 Flu 150 (MAC) ATG-T 10 CSA/MTX No No  Alive (mo+108) RTI (ADV, PIV3, metapneumovirus)  
31 18 MUD 10/10 PBSC No Mel 140
Flu 150 (RIC) 
Alemt. 1 CSA/MMF Yes  Alive (mo+24)   
32 192 MMFD 3/6 PBSC Yes TCRab/CD19 Treo 42
Flu 150
TT 10 (MAC) 
Alemt. 0.3 None No  Alive (mo+28) GI (ADV, NV)
RTI (Covid-19) 
 
33 43 UCB 5/6 UCB No Bu 16
Cy 200 (MAC) 
ATG-E 90 CSA/pred No Yes  Alive (mo+156)  AIHA§
ITP§
DM
Graves disease 
34 119 UCB 4/6 UCB No Flu 125
Mel 140 (RIC) 
Alemt. 2.3 Tacro MTX No No  Alive (mo+96)   
35 92 UCB 6/6 UCB No Flu 125
Mel 140 (RIC) 
Alemt. 2.4 Tacro/MTX   2nd HSCT (mo+5) Autologous recovery VZV (zoster)
RTI by EBV 
 
36  52 UCB 5/6 UCB No Flu 150
Mel 140
TT 7 (MAC) 
Alemt. 3.2 Tacro/MTX NA  Died (mo+8.5) ADV, CMV (acute relapsing GVHD)  
37 MMFD 7/10 BM No Bu cAUC 55
Cy 20
Flu 150 (RIC) 
Alemt. 0.4 PtCY d+3/+4 Tacro/MMF No No 2nd HSCT (mo+17) Alive (mo+80) EBV (rituximab)
RTI (Aspergillus
AIHA 
38 MUD 9/10 BM No Bu cAUC 79 Flu 160 (MAC) Alemt. 0.6 CSA/MMF No  Alive (mo+53) VOD  
39 41 MUD 10/10 PBSC No Bu 12
Flu 250 (MAC) 
Alemt. 0.6 CSA/MTX No No  Alive (mo+30) EBV+PTLD (rituximab)
GI (sapovirus)
Neisseria bacteremia 
 
40 26 MUD 9/10 PBSC No Bu 12
Flu 250 (MAC) 
Alemt. 0.6 CSA/MTX No  Alive (mo+22) EBV (rituximab)
RTI (rhinovirus/enterovirus/CV)
GI (sapovirus) 
 
41 MUD 10/10 PBSC No Bu12
Flu 250 (MAC) 
Alemt. 0.6 CSA/MTX No 2nd HSCT (mo+15)
(+SCB) 
Alive (mo+32) EBV (rituximab)
RTI (enterovirus/rhinovirus, ADV) 
 
42 12 MMFD 7/10 PBSC No None None PtCY d+3/+4 Tacro/MMF No No SCB (mo+3) Alive (mo+45)   
43 22 MMFD 6/10 PBSC Yes
TCRab/CD19 
Treo 42
Flu 150
Thio 10 (MAC) 
ATG-T 5 Tocilizumab
abatacept
rituximab 
No No CD45RA deplet. DLI (d+47, +81, +94) Alive (mo+63) RTI (HHV6, RSV)
GI (RV, HHV6, ADV)
Sepsis (Candida)
Disseminated BCG 
Arthritis 
44  37 MUD 10/10 BM No Bu cAUC 75
Flu 160 (MAC) 
ATG-T 7.5 CSA/MMF No NA  Died (d+15) MAS  
45 23 MMFD 5/10 PBSC Yes
TCRab/CD19 
Treo 42
Flu 150
TT 10 (MAC) 
ATG-G 30 MMF, pred, ruxolitinib, vedolizumab Yes, skin, 2 No  Alive (mo+12) EBV infection
GI NV
Zoster (VZV)
RTI (rhinovirus/enterovirus, BV) 
 
46 MUD 10/10 BM No Bu cAUC 79
Flu 180 (MAC) 
Alemt. 0.6 CSA/MMF No No  Alive (mo+85)   

ADV, adenovirus; Alemt., alemtuzumab (mg/kg body weight); ATG-E, horse anti–thymocyte globulin (mg/kg body weight); ATG-G, rabbit anti–T-lymphocyte globulin (mg/kg body weight); ATG-T, rabbit antithymocyte globulin (mg/kg body weight); Bu, busulfan (mg/kg body weight); BV, bocavirus; cAUC, cumulative area under the curve (mg/L × h); CSA, cyclosporine A; CV, coronavirus; Cy, cyclophosphamide; DM, diabetes mellitus; Flu, fludarabine (mg/m2 body surface area); GI, gastrointestinal infection; Mel, melphalan; MFD, matched family donor; MMF, mycophenolate mofetil; MMFD, mismatched family donor; MTX, methotrexate; NA, not applicable; NV, norovirus; PBSC, peripheral blood stem cells; PIV3, parainfluenza virus type 3; Pred, prednisolone; PtCY, post-HSCT cyclophosphamide; PTLD, posttransplant lymphoproliferative disease; RTI, respiratory tract infection; Tacro, tacrolimus; TCRab, T-cell receptor αβ; Treo, treosulfan (g/m2 body surface area); TT, thiotepa (mg/kg body weight); VOD, veno-occlusive disease; UCB, umbilical cord blood.

In vitro depletion.

Definitions of conditioning (supplemental Material).

Deceased patient.

§

Resolved after rituximab treatment.

One patient developed primary GF and 4 patients developed secondary GF, both occurring after MAC and RIC conditioning. There was no difference in the OS among those who received RIC conditioning,34 those who received no conditioning,44 and those who received MAC conditioning, but higher rates of a second HSCT (24%; 4/17) and additional secondary CT, eg, DLI (n = 1) and SCB (n = 2) (41%; 7/17), were observed in the RIC/no conditioning group, whereas the CT rate was lower in the MAC group (1 DLI, second HSCT, and SCB; 10%; 3/29).

All patients with GF underwent a second HSCT with 2 of the patients receiving grafts from the primary donors (haploidentical, matched unrelated donor [MUD]) and 3 patients receiving grafts from secondary donors (2 MUD, 1 haploidentical). For reconditioning chemotherapy, RIC (n = 4) and MAC (n = 1) conditioning regimens were administered. No GF or acute or chronic GVHD was observed after the second HSCT, and all patients survived (Table 3; supplemental Table 3).

GHVD and other complications

No unusual toxicities were reported after conditioning for the primary or secondary HSCTs with the exception of 2 episodes of nonlethal hepatic veno-occlusive disease. Acute GVHD grade 2 to 4 was observed in 13 (30%) patients and grade 3 to 4 was observed in 7 (16%) patients. Among the surviving patients, chronic limited GVHD was observed in 7 (16%) patients, and none had extensive GVHD.

Among the patients who died, 3 patients had either chronic extensive (patient 4) or acute relapsing GVHD (patients 25 and 36); 2 of them died as a consequence of infections (adenovirus and sepsis/meningitis) (Table 3).

A total of 24% (11/46) of patients had relevant infections, including viral infections, eg, adenovirus, human herpesvirus 6 (HHV6), CMV, EBV, VZV, rotavirus, sapovirus, enterovirus/rhinovirus, respiratory syncytial virus (RSV), human metapneumovirus, and SARS-CoV-2. Bacterial infections included Clostridium difficile, Klebsiella pneumoniae, viridans group streptococci, and bacillus Calmette-Guérin (BCG), whereas the fungal infections were caused by Aspergillus sp. and Candida sp. In 4 cases, EBV reactivation required rituximab administration. All of these infections resolved (Table 3).

Secondary AIDs were observed in 15% of patients (7/46), including AIHA (3/46) and Evans syndrome (2/46), Graves disease, macrophage activation syndrome, arthritis, alopecia totalis, and diabetes mellitus. All episodes of secondary autoimmune cytopenia resolved after intensified immunosuppression, including rituximab (Table 3; supplemental Table 3).

Survival

After a median follow-up period of 7.9 years (1.0-22.3), the 3-year OS and EFS probabilities were 86% (95% CI, 77-97) and 75% (95% CI, 64-89), respectively. A total of 40 patients survived, whereas 6 patients died (13%). Five of these deaths occurred because of infections, whereas 1 patient succumbed to status epilepticus shortly after undergoing HSCT. Four patients passed away during the first year following HSCT, whereas 2 patients died >2 years after HSCT (Figure 2A; Table 3).

Figure 2.

OS and EFS curves. Kaplan-Meier survival curves illustrating the OS following HSCT. (A) OS and EFS after HSCT. (B) OS based on age at neurologic presentation (NP) (<11 months vs ≥11 months). (C) OS stratified by time from diagnosis to HSCT (<24 months vs ≥24 months). (D) EFS based on donor type, namely matched family donor (MFD), mismatched family donor (MMFD), MUD. (E) OS by age at HSCT (<28 months vs ≥28 months). (F) OS according to conditioning regimen, namely MAC, RIC, or none.

Figure 2.

OS and EFS curves. Kaplan-Meier survival curves illustrating the OS following HSCT. (A) OS and EFS after HSCT. (B) OS based on age at neurologic presentation (NP) (<11 months vs ≥11 months). (C) OS stratified by time from diagnosis to HSCT (<24 months vs ≥24 months). (D) EFS based on donor type, namely matched family donor (MFD), mismatched family donor (MMFD), MUD. (E) OS by age at HSCT (<28 months vs ≥28 months). (F) OS according to conditioning regimen, namely MAC, RIC, or none.

Close modal

MSD/matched family donor transplants produced 100% disease-free survival (DFS). Unrelated donor and cord blood transplantation exhibited slightly lower success rates with 80.7% of patients experiencing DFS. Five of the 6 deaths occurred after MUD/mismatched unrelated donor (3/6) or UCB (2/6) transplantation. Haploidentical transplants demonstrated an 87.5% DFS rate, although the number of patients in this group was limited (8/46).

Patients diagnosed at birth and who underwent early HSCT (median age of 4 months) exhibited superior survival outcomes (100%) when compared with the rest of the cohort (84% CI, 74-97; P = .28; supplemental Figure 1R), suggesting that early diagnosis and HSCT can improve the overall outcomes, similar to what is seen in patients with SCID.45 

Patients who underwent HSCT within 24 months after initial presentation demonstrated superior OS (95% CI, 87-100 vs 70% CI, 51-97; P = .049). Conversely, neurologic symptoms that occurred before 11 months of age were associated with reduced OS (69% CI, 49-96 vs 94% CI, 83-100; P = .027). Furthermore, patients who underwent HSCT at a younger age (before 28 months of age) exhibited improved OS (96% CI, 89-100 vs 73% CI, 56-97; P = .036). However, a contrasting trend toward poorer outcomes was observed in children who presented solely with neurologic symptoms (75% CI, 57-100 vs 92% CI, 83-100; P = .076). Graft source, gender, alkylator, RIC, MAC, time of initial clinical presentation, and presence of AID before HSCT did not have a significant influence on OS (Figure 2; supplemental Figure 1A-V).

Donor chimerism and immune restoration

At the last FU, all surviving patients had been weaned from immunosuppression and exhibited adequate T-cell numbers and function, which provided protection against opportunistic infections and cured secondary autoimmune cytopenia. In total, 85% of patients (34/40) have discontinued immunoglobulin replacement therapy, whereas 15% (6/40) patients remained on immunoglobulin replacement therapy; 4 of these patients have undergone previous rituximab treatment.

DC evaluation in whole blood was conducted at the last FU in 37 of the 40 (92,5%) surviving patients, including 5 patients who successfully underwent a second HSCT (supplemental Figure 3; supplemental Table 3). The DC analysis revealed that 68% (25/37) exhibited levels of >95%, 18% (7/37) demonstrated levels between 50% and 95%, and 14% (5/37) had levels of <50% (with at least 12%). The DC in CD15+ cells (neutrophils) was analyzed in 10 patients, revealing that 20% (2/10) exhibited levels of >95%, 20% (2/10) had levels of between 50% and 95%, and 40% (6/10) had levels <50% (with at least 5%). The analysis of DC in CD3+ cells (T cells) in 19 patients revealed that 42% (8/19) exhibited levels of >95%, 37% (9/19) demonstrated levels of between 50% and 95%, and 10.5% (2/19) showed levels <50% (at least 40%). The DC in CD19+/CD20+ (B cells) was analyzed in 13 patients, revealing that 31% (4/13) exhibited levels of >95%, 15% (2/13) had levels of between 50% and 95%, and 54% (7/13) had levels of <50% (with at least 3%).

Metabolic analyses were available in 67.5% (27/40) of patients of whom 9 had normalized urinary purine metabolites and 18 had normal or greater than 10% PNP enzyme activity. Our data were insufficient to correlate the normalization of urine metabolites and/or PNP enzymatic activity with a particular transplant approach (Table 4; supplemental Figure 3).

Table 4.

Donor cell chimerism and immune and metabolic parameters at last FU

IDFU (mo)DC
WBC (%)
DC
CD15+ (%)
DC
CD3+ (%)
DC
CD19+ (%)
PNP enzyme activity/metabolites CD3+ (per μL)CD4+/naïve CD4+45RA+ (per μL)CD8+ (per μL)PHA (SI)CD19 (per μL)IVIG (yes/no)
1  Died            
156 100 ND ND ND ND 1655 750 750 228 325 No 
125 100 ND ND ND ND 1050 470 545 461 235 No 
4  Died            
84 100 ND ND ND ND 2920 1570 990 1016 1100 No 
70 100 ND ND ND ND 655 370 260 251 240 No 
221 50 22 93 ND Metabolites normal 1843 684 1064 Normal Yes 
151 100 ND 100 92 Metabolites normal 2410 1353 780 Normal 1271 No 
114 95 ND 100 ND Metabolites normal ND ND ND ND ND Yes 
10 161 40 ND 83 ND ND 13 300 1260 11 080 Normal 280 No 
11 98 90 ND ND ND PNP enzyme normal 1796 949/92 847 ND 338 No 
12 160 100 ND ND ND ND 1160 499 549 ND 420 No 
13§  268 100 ND ND ND PNP enzyme normal 670 370/70 230 ND 120 No 
14 192 35 11 85 ND ND 1260 610/250 570 111 210 No 
15 137 90 79 100 87 PNP enzyme normal 1340 720/430 530 220 170 Yes 
16§  252 99 ND ND ND PNP enzyme normal 1950 1546 371 516 Normal Yes 
17 65 ND 100 20 ND 3690 258 2331 Normal 111 No 
18 87 100 ND ND ND PNP enzyme normal 3691 1678 1918 Normal 881 No 
19 62 48 ND 44 ND ND 868 468 369 ND 233 No 
20 28 99 ND ND ND PNP enzyme normal 1335 427 836 ND 267 No 
21 20 96 ND ND ND ND ND ND ND ND ND No 
22 125 100 ND ND ND PNP enzyme normal ND ND ND ND ND No 
23 112 100 ND ND ND PNP enzyme normal 1796 929/543 683 Normal 521 No 
24 94 70 ND 80 60 ND 2950 1621/1149 993 ND 315 No 
25  Died            
26 72.0 70 73 75 50 PNP enzyme normal 1650 750 570 235 280 No 
27 156.0 100 ND ND ND PNP enzyme normal 3063 950/260 582 Normal 1623 No 
28 96.0 100 ND ND ND PNP enzyme normal 1648 914/548 642 ND 345 No 
29  Died            
30 108 100 ND ND ND PNP enzyme normal 3455 1462/950 1123 Normal 670 No 
31 24 100 ND ND ND ND 700 40 250 ND 340 Yes 
32 28 100 ND ND ND ND normal Normal Normal  Normal No 
33 156 100 ND ND ND PNP enzyme normal 1626 779/53 666 Normal 239 No 
34 96 85 10 85 10 ND 341 203/30 124 ND 104 No 
35 98 100 ND 100 100 ND 1636 1018/43 468 ND 650 No 
36  Died            
37 80 100 ND ND ND Metabolites normal 2220 1110/701 832 0.95 462 No 
38 53 ND ND ND ND Metabolites normal 3072 2035/1608 768 0.9 653 No 
39§  30 100 100 100 100 Metabolites normal 2180 930 640 Normal 500 No 
40§  22 99 98 95 96 Metabolites normal 980 252 340 Normal 260 No 
41§  32 ND 77 Metabolites normal 1430 201 760 Normal  Yes 
42 45 12 ND 80 Metabolites normal 272 114/11 209 Normal 167 No 
43 63 100 ND 100  ND Normal Normal Normal ND Normal Yes 
44  Died            
45 12 100 ND 100 100 ND 4580 ND 1860 34.7 1090 No 
46 85 77 ND 79 45 PNP enzyme normal 1760 ND 750 1171 310 No 
IDFU (mo)DC
WBC (%)
DC
CD15+ (%)
DC
CD3+ (%)
DC
CD19+ (%)
PNP enzyme activity/metabolites CD3+ (per μL)CD4+/naïve CD4+45RA+ (per μL)CD8+ (per μL)PHA (SI)CD19 (per μL)IVIG (yes/no)
1  Died            
156 100 ND ND ND ND 1655 750 750 228 325 No 
125 100 ND ND ND ND 1050 470 545 461 235 No 
4  Died            
84 100 ND ND ND ND 2920 1570 990 1016 1100 No 
70 100 ND ND ND ND 655 370 260 251 240 No 
221 50 22 93 ND Metabolites normal 1843 684 1064 Normal Yes 
151 100 ND 100 92 Metabolites normal 2410 1353 780 Normal 1271 No 
114 95 ND 100 ND Metabolites normal ND ND ND ND ND Yes 
10 161 40 ND 83 ND ND 13 300 1260 11 080 Normal 280 No 
11 98 90 ND ND ND PNP enzyme normal 1796 949/92 847 ND 338 No 
12 160 100 ND ND ND ND 1160 499 549 ND 420 No 
13§  268 100 ND ND ND PNP enzyme normal 670 370/70 230 ND 120 No 
14 192 35 11 85 ND ND 1260 610/250 570 111 210 No 
15 137 90 79 100 87 PNP enzyme normal 1340 720/430 530 220 170 Yes 
16§  252 99 ND ND ND PNP enzyme normal 1950 1546 371 516 Normal Yes 
17 65 ND 100 20 ND 3690 258 2331 Normal 111 No 
18 87 100 ND ND ND PNP enzyme normal 3691 1678 1918 Normal 881 No 
19 62 48 ND 44 ND ND 868 468 369 ND 233 No 
20 28 99 ND ND ND PNP enzyme normal 1335 427 836 ND 267 No 
21 20 96 ND ND ND ND ND ND ND ND ND No 
22 125 100 ND ND ND PNP enzyme normal ND ND ND ND ND No 
23 112 100 ND ND ND PNP enzyme normal 1796 929/543 683 Normal 521 No 
24 94 70 ND 80 60 ND 2950 1621/1149 993 ND 315 No 
25  Died            
26 72.0 70 73 75 50 PNP enzyme normal 1650 750 570 235 280 No 
27 156.0 100 ND ND ND PNP enzyme normal 3063 950/260 582 Normal 1623 No 
28 96.0 100 ND ND ND PNP enzyme normal 1648 914/548 642 ND 345 No 
29  Died            
30 108 100 ND ND ND PNP enzyme normal 3455 1462/950 1123 Normal 670 No 
31 24 100 ND ND ND ND 700 40 250 ND 340 Yes 
32 28 100 ND ND ND ND normal Normal Normal  Normal No 
33 156 100 ND ND ND PNP enzyme normal 1626 779/53 666 Normal 239 No 
34 96 85 10 85 10 ND 341 203/30 124 ND 104 No 
35 98 100 ND 100 100 ND 1636 1018/43 468 ND 650 No 
36  Died            
37 80 100 ND ND ND Metabolites normal 2220 1110/701 832 0.95 462 No 
38 53 ND ND ND ND Metabolites normal 3072 2035/1608 768 0.9 653 No 
39§  30 100 100 100 100 Metabolites normal 2180 930 640 Normal 500 No 
40§  22 99 98 95 96 Metabolites normal 980 252 340 Normal 260 No 
41§  32 ND 77 Metabolites normal 1430 201 760 Normal  Yes 
42 45 12 ND 80 Metabolites normal 272 114/11 209 Normal 167 No 
43 63 100 ND 100  ND Normal Normal Normal ND Normal Yes 
44  Died            
45 12 100 ND 100 100 ND 4580 ND 1860 34.7 1090 No 
46 85 77 ND 79 45 PNP enzyme normal 1760 ND 750 1171 310 No 

IVIG, intravenous immunoglobulin dependent; ND, not done; Normal, testing of lymphocyte subpopulations, PHA mitogen stimulation, urinary purine metabolites within the normal range; PHA SI, phytohemagglutinin stimulation of lymphocytes; SI, stimulation index; WBC, white blood cells.

Erythrocyte PNP enzyme activity in untransfused patients.

Urinary purine metabolites (uric acid, deoxyguanosine triphosphate, guanosine, inosine, deoxyguanosine, and deoxyinosine).

Deceased patient.

§

Treated with rituximab.

Neurologic outcomes

At the most recent FU, the treating physician evaluated the severity of neurologic symptoms and the CHIMO score and classified the results into 3 categories, namely improved (17/40; 42.5%), clinically stable (n = 16/40; 40%), or declined (n = 7/40; 17.5%). The median CHIMO score was determined to be 14 (range, 6-17), with medians of 3 (0-3) for cognition, 3 (1-3) for hearing, 4 (1-4) for interaction, 3 (1-4) for movement, and 2 (0-3) for occupation. The median Karnofsky and Lansky scores were 90% and 85%, respectively, with a range of 40% to 100% for both scores (Table 5; Figures 3 and 4). In most of our patients, no further neurologic deterioration occurred after HSCT once adequate engraftment of donor myeloid cells had been achieved. After a median FU period of >7 years following HSCT, most surviving patients had reached preschool/school age, thereby enabling more precise categorization of the category occupation within the CHIMO score. The analysis of CHIMO scores revealed that 50% (20/40) of patients attained the highest scores of between 15 and 17, whereas an additional 35% (14/40) scored within the range of 12 to 14. Conversely, 15% (6/40) of patients, were in the lowest score range of 6 to 11. All 6 patients who were diagnosed early by family history and who underwent early HSCT were alive and were assessed with a median CHIMO score of 14 (9-17) at a median FU of 63 months (Table 5), which was comparable with the median CHIMO score of 14 for the entire cohort. Four of these early-diagnosed patients received ET shortly after birth, which was reported to achieve measurable purine metabolite detoxification before HSCT.30 Although early detoxification until HSCT seems a rational approach for early-diagnosed patients with PNP,27 it was as yet impossible to determine whether this affects the long-term neurologic outcomes given the limited number of subjects.

Table 5.

Neurologic outcome and CHIMO score at last FU

IDFU (mo)Cognition (score)Hearing (score)Interaction (score)Movement (score)Occupation (score)CHIMO (score)Karnofsky (score)Lansky (score)Neurologic evaluation
1  Died          
156 16 100 100 Stable 
125 15 100 100 Stable 
4  Died          
84 40 40 Stable 
70 50 50 Stable 
7  221 14 50 70 Improved 
151 17 100 100 Improved 
114 16 90 100 Stable 
10 161 50  Stable 
11 98 13  100 Improved 
12 160 16 100  Stable 
13 268 16 90 90 Stable 
14 192 13 80 90 Improved 
15 137 15 100 100 Stable 
16  252 11 40 100 Declined 
17 65 12  70 Stable 
18 87 17 100 100 Improved 
19 62 12 70 100 Improved 
20 28 15 90  Improved 
21 20 13 70  Improved 
22 125 17 100  Stable 
23 112 15  80 Improved 
24 94 16  90 Declined 
25  Died          
26  72.0 50 75 Stable 
27 156.0 16 90  Improved 
28 96.0 12 100  Declined 
29  Died          
30 108 12 70  Stable 
31 24 15 90 90 Improved 
32 28 12 60  Stable 
33 156 13 90  Stable 
34 96 17 100  Improved 
35 98 15 90  Improved 
36  Died          
37  80 16  100 Declined 
38  53 17  100 Stable 
39 30 17  100 Improved 
40 22 15  100 Improved 
41  32 14  90 Declined 
42 45 70 90 Declined 
43 63 13 60 70 Improved 
44  Died          
45 12 13 50 70 Improved 
46  85 13 40 70 Declined 
IDFU (mo)Cognition (score)Hearing (score)Interaction (score)Movement (score)Occupation (score)CHIMO (score)Karnofsky (score)Lansky (score)Neurologic evaluation
1  Died          
156 16 100 100 Stable 
125 15 100 100 Stable 
4  Died          
84 40 40 Stable 
70 50 50 Stable 
7  221 14 50 70 Improved 
151 17 100 100 Improved 
114 16 90 100 Stable 
10 161 50  Stable 
11 98 13  100 Improved 
12 160 16 100  Stable 
13 268 16 90 90 Stable 
14 192 13 80 90 Improved 
15 137 15 100 100 Stable 
16  252 11 40 100 Declined 
17 65 12  70 Stable 
18 87 17 100 100 Improved 
19 62 12 70 100 Improved 
20 28 15 90  Improved 
21 20 13 70  Improved 
22 125 17 100  Stable 
23 112 15  80 Improved 
24 94 16  90 Declined 
25  Died          
26  72.0 50 75 Stable 
27 156.0 16 90  Improved 
28 96.0 12 100  Declined 
29  Died          
30 108 12 70  Stable 
31 24 15 90 90 Improved 
32 28 12 60  Stable 
33 156 13 90  Stable 
34 96 17 100  Improved 
35 98 15 90  Improved 
36  Died          
37  80 16  100 Declined 
38  53 17  100 Stable 
39 30 17  100 Improved 
40 22 15  100 Improved 
41  32 14  90 Declined 
42 45 70 90 Declined 
43 63 13 60 70 Improved 
44  Died          
45 12 13 50 70 Improved 
46  85 13 40 70 Declined 

FU, follow-up (in months after HSCT).

Deceased patient.

Perinatal/antenatal diagnosis owing to family history (patients 37, 38, 41, and 46 had received red cell exchange transfusions after birth).

Figure 3.

Distribution of CHIMO scores at last FU visit. Plot illustrating the distribution of CHIMO scores across different domains, namely cognition, hearing, interaction, movement, and occupation, as well as the overall CHIMO score. Scores are displayed for individual patients at their specific age at their respective time of FU for the assessment of the CHIMO score.

Figure 3.

Distribution of CHIMO scores at last FU visit. Plot illustrating the distribution of CHIMO scores across different domains, namely cognition, hearing, interaction, movement, and occupation, as well as the overall CHIMO score. Scores are displayed for individual patients at their specific age at their respective time of FU for the assessment of the CHIMO score.

Close modal
Figure 4.

Severity of categorized symptoms before and after HSCT. Heat map depicting the severity scores of clinical symptoms before and after HSCT divided into the categories, namely neurology, infection, and autoimmunity. Scores were based on clinical descriptions and CHIMO scores (refer to the supplemental Material). Asterisk (∗) marks the 6 patients diagnosed perinatally by family history.

Figure 4.

Severity of categorized symptoms before and after HSCT. Heat map depicting the severity scores of clinical symptoms before and after HSCT divided into the categories, namely neurology, infection, and autoimmunity. Scores were based on clinical descriptions and CHIMO scores (refer to the supplemental Material). Asterisk (∗) marks the 6 patients diagnosed perinatally by family history.

Close modal

The initial cases of PNP deficiency were reported in 1975, and since then, ∼100 patients with PNP deficiency have been described in the literature,1,7,8,15 primarily in the form of case reports. In 1991, only a minority (29%) survived.1 Between 1975 and 2022, only 22 patients have been reported to have undergone HSCT.15 Long-term studies on the clinical and neurologic outcomes are still lacking, and so assessing the long-term prognosis of these patients after HSCT remains a major challenge today.3,4,11,15,20,23,24,28,29,46-50 

Early diagnosis of PNP deficiency in infancy is challenging because of the variability in symptoms of immunodeficiency, which are more consistent with CID than SCID. For instance, no cases of Pneumocystis jirovecii pneumonia have been documented in our or other series.15,41,45 The most prevalent infectious symptoms during infancy were nonspecific respiratory tract infections and thrush, whereas severe or atypical VZV infections, including from vaccine strains, were observed exclusively in patients beyond infancy. Furthermore, approximately one-third of our patients exhibited neurologic abnormalities without any clinical signs of immunodeficiency (see also Habib Dzulkarnain et al15; Torun et al17; Tsui et al27; Dror et al51). Motor delay manifested as global hypotonia in infants and as spastic paresis and ataxia in older children, whereas secondary AIDs were mainly observed late in infancy or in the second year of life. Consequentially, the median age at HSCT in our cohort was remarkably late at 26 months of age. Before HSCT, the percentage of patients with neurologic abnormalities had more than doubled by the time of HSCT, often because of infectious complications that involved the CNS. This underscores the importance of thorough clinical evaluation for timely diagnosis.

Magnetic resonance imaging of the CNS, which was not standardized in this study, showed many normal but also occasional pathologic findings, including atrophy of the corpus callosum and delayed myelination. Similar inconsistent findings have been documented in previous studies of patients with PNP deficiency.4,13,15,17,52 However, in PNP-deficient mice, the small size of the cerebellum, corpus callosum, and thalamus has been attributed largely to increased neuronal apoptosis, which does not seem to be as clearly demonstrable in humans.53 Conversely, other clinical neurologic abnormalities, including microcephaly/brachycephaly and SNHL were clearly not caused by PNP deficiency, because these same findings were observed in consanguineous families in siblings without a detected PNP mutation. In contrast with the manifestations associated with adenosine deaminase deficiency, no additional cases of SNHL were observed,15 suggesting that this complication is unlikely in PNP deficiency.

Conditioning regimens A/B/C of the ESID/EBMT guidelines comprising MAC and reduced-toxicity regimens34 were overall successful in the present PNP-deficient cohort. No excessive endothelial, skin/epithelial, or organ toxicity was observed after MAC conditioning, suggesting that the increased radiosensitivity of thymocytes and peripheral T cells demonstrated in PNP-deficient mouse models is clinically irrelevant in affected humans.2,51 The necessity of brain conditioning with busulfan to facilitate the migration of monocytic precursors into the CNS and their possible subsequent transdifferentiation into neuroglial cells is a subject of debate in PNP deficiency. Experiments have demonstrated that the proportion of glial precursors from PNP-deficient induced pluripotent stem cells is not statistically different from that observed in healthy controls. This observation suggests that glial cells may not play a significant role in the neurologic impairment associated with PNP deficiency.27 The present study supports this finding by demonstrating no discernible differences in neurologic outcomes between patients who received busulfan-containing regimens and those who received treosulfan, which does not penetrate the blood-brain barrier well. Because of a higher rate of CTs after RIC regimens, which were mainly based on melphalan/fludarabine (regimen E34), we believe that regimens A/B/C34 are preferable in patients with PNP deficiency to ensure long-term myeloid donor engraftment,44 but larger studies are needed to prove this.

Despite the use of anti–T-cell–mediated serotherapy in most patients, complications such as chronic GVHD, GF, and secondary AIDs+ were not uncommon. In order to further optimize conditioning regimens and reduce these complications, it is essential to continue refining therapeutic drug monitoring of busulfan,54 treosulfan,55 ATG,56 or alemtuzumab,57 as well as T-cell depletion techniques, such as in vitro TCR α-β/CD19-depletion58 or cyclophosphamide after haploidentical HSCT.

T-cell lymphopenia resolved in all surviving patients in our cohort, although a few patients had stable but low levels of mixed myeloid DC. No new neurologic symptoms developed in these patients with low-level DC, suggesting that residual PNP activity, even if generated by a small number of engrafted donor myeloid and erythroid progenitor cells, may lead to immunologic and metabolic recovery. Despite the limitation that biochemical analyses were not consistently available for all patients in the present report, patients with mixed myeloid DC were shown to have sufficient PNP enzyme activity and/or the absence of urinary purine metabolites. Our findings are consistent with reports of patients with partial PNP deficiency and residual PNP enzyme activity (8%-11%) who had near-normal immunity and normal neurologic development into their third decade of life.2 Furthermore, measurable detoxification has already been demonstrated in a patient with 5% myeloid DC after unconditioned HSCT.44 

Assessment of the neurologic outcomes after HSCT remains challenging, particularly in infants and young children who reach new developmental milestones over time.26,48,59 The spectrum and variable degree of neurologic impairment in individuals with PNP deficiency could hypothetically be caused by the interindividual variability in residual enzyme activity. However, we were unable to confirm this hypothesis in our cohort, because we did not observe any differences in the outcomes between patients with absent or residual enzyme function at baseline. The presence of reported differences in neurologic phenotypes, even among family members with identical mutations, suggests that additional factors may play an important role.27 These additional factors could include interindividual differences in the susceptibility to neuronal apoptosis and external factors, such as secondary infections of the CNS.

To more precisely assess neurologic outcomes, we included the CHIMO score in the outcome analysis with the caveat that although all CHIMO subscores had been validated, the overall CHIMO score had not.36-38 The median CHIMO score of 14 achieved by the entire surviving cohort was compatible with satisfactory academic and professional performance, as well as the ability to live independently without external assistance in adulthood. Residual motor impairment was more common than severe cognitive impairment with the former very rarely requiring the use of a wheelchair. A detailed analysis of observed behavioral problems, such as attention deficit or autism spectrum disorders, which are quite prevalent in adenosine deaminase deficiency, was beyond the scope of this analysis. However, these conditions may have contributed to educational challenges and lower vocational performance in some patients.

This investigation of the largest cohort of patients with PNP to date confirms that HSCT, using blood stem cells from HLA-matched and haploidentical donors, is curative for affected patients after using different conditioning regimens. Survival with sufficient myeloid DC was associated with metabolic correction and stabilization of neurodevelopmental status without further neurologic decline, which led to predominantly satisfactory long-term neurologic outcomes.

Although timely diagnosis and HSCT improved the OS, we were unable to assess the impact of disease-specific factors on neurologic outcomes, such as individual susceptibility to neuronal apoptosis,27 or additional damage caused by CNS infections18 because of the limitations of our study. In addition, we were unable to show that patients who were diagnosed at birth and were neurologically asymptomatic30 achieved superior median CHIMO scores when compared with patients who were diagnosed later upon clinical symptoms. Given the limited number of neurologically asymptomatic patients, the need for larger comparative studies with early-diagnosed patients with PNP deficiency is mandatory.

The introduction of a sensitive newborn screening method for PNP deficiency could therefore be useful to commence detoxification and HSCT on affected patients as early as possible. Future studies will show whether this can further improve the results presented here.

The authors acknowledge Horst von Bernuth, Department of Pediatric Pneumology and Immunology, Pediatric Immunology and Infectious Diseases, Charité Berlin–Campus Rudolf Virchow, Berlin, Germany, for expertise and contributing patients.

Contribution: T.G. developed the initial concept; T.G., U.S.H., and M.F. gathered, filtered, and analyzed data; U.S.H., M.F., B.N., M.S.H., M.H.A., M.H., and T.G. wrote the manuscript; U.S.H. and A.H. created the CHIMO score; M.F., T.G., and P.G. plotted the figures and performed the statistical analyses; and A.W., S.H., V.A.L., B.S., A.G., A.R.G., F.D., M.H.A., F.H., R.W., M.C., I.M., C.L., V.B., R.G.M.B., J.-S.K., I.Z., A. Laberko, U.Z., M.H.-H., A. Lankester, A.I., G.M.T.G., A.H., A.Y., G.D., K.R., A.S.S., M.S.H., S.H.P., C.B.d.C.R., M.H., F.D., M.V., and F.Z. contributed patients and revised the manuscript and its content.

Conflict-of-interest disclosure: I.M. reports being part of a European Reference Network for Rare Immunological and Autoimmune Diseases Core Center; is a senior clinical researcher at Research Foundation–Flanders; and is supported by the Jeffrey Modell Foundation. T.G., M.F., M.H.-H., U.Z., and A.H. report being part of the Children’s Research Center of the University Children’s Hospital, Zürich, Switzerland. The remaining authors have no conflict of interest to disclose.

A complete list of the members of the EBMT Inborn Errors Working Party appears in the supplemental Appendix.

Correspondence: Tayfun Güngör, Department of Stem Cell Transplantation, University Children's Hospital, Lenggstr 30, CH-8008 Zurich, Switzerland; email: tayfun.guengoer@kispi.uzh.ch.

1.
Markert
ML
.
Purine nucleoside phosphorylase deficiency
.
Immunodefic Rev
.
1991
;
3
(
1
):
45
-
81
.
2.
Grunebaum
E
,
Campbell
N
,
Leon-Ponte
M
,
Xu
X
,
Chapdelaine
H
.
Partial purine nucleoside phosphorylase deficiency helps determine minimal activity required for immune and neurological development
.
Front Immunol
.
2020
;
11
:
1257
.
3.
Alangari
A
,
Al-Harbi
A
,
Al-Ghonaium
A
,
Santisteban
I
,
Hershfield
M
.
Purine nucleoside phosphorylase deficiency in two unrelated Saudi patients
.
Ann Saudi Med
.
2009
;
29
(
4
):
309
-
312
.
4.
Karaaslan
BG
,
Turan
I
,
Aydemir
S
, et al
.
Neurologic status of patients with purine nucleoside phosphorylase deficiency before and after hematopoetic stem cell transplantation
.
J Clin Immunol
.
2023
;
43
(
8
):
2062
-
2075
.
5.
Arpaia
E
,
Benveniste
P
,
Di Cristofano
A
, et al
.
Mitochondrial basis for immune deficiency. Evidence from purine nucleoside phosphorylase-deficient mice
.
J Exp Med
.
2000
;
191
(
12
):
2197
-
2208
.
6.
Osborne
WR
,
Ochs
HD
. Immunodeficiency disease due to deficiency of purine nucleoside phosphorylase. In:
Ochs
HD
,
Smith
C.I.E.
,
Puck
JM
, eds.
Primary Immunodeficiency Diseases: A Molecular and Genetic Approach
.
Oxford University Press
;
1999
:
169
-
196
.
7.
Hershfield
MS
,
Mitchell
BS
. Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency. In:
Scriver
CR
,
Beaudet
AL
,
Sly
WS
,
Valle
D
, eds.
The metabolic and molecular bases of inherited disease
.
McGraw Hill
;
2001
:
2585
-
2625
.
8.
Markert
ML
,
Finkel
BD
,
McLaughlin
TM
, et al
.
Mutations in purine nucleoside phosphorylase deficiency
.
Hum Mutat
.
1997
;
9
(
2
):
118
-
121
.
9.
Martín-Nalda
A
,
Rivière
JG
,
Català-Besa
M
, et al
.
Early diagnosis and treatment of purine nucleoside phosphorylase (PNP) deficiency through TREC-based newborn screening
.
Int J Neonatal Screen
.
2021
;
7
(
4
):
62
.
10.
la Marca
G
,
Canessa
C
,
Giocaliere
E
, et al
.
Diagnosis of immunodeficiency caused by a purine nucleoside phosphorylase defect by using tandem mass spectrometry on dried blood spots
.
J Allergy Clin Immunol
.
2014
;
134
(
1
):
155
-
159
.
11.
Aytekin
C
,
Dogu
F
,
Tanir
G
, et al
.
Purine nucleoside phosphorylase deficiency with fatal course in two sisters
.
Eur J Pediatr
.
2010
;
169
(
3
):
311
-
314
.
12.
Giblett
ER
,
Ammann
AJ
,
Wara
DW
,
Sandman
R
,
Diamond
LK
.
Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity
.
Lancet
.
1975
;
1
(
7914
):
1010
-
1013
.
13.
Ozkinay
F
,
Pehlivan
S
,
Onay
H
, et al
.
Purine nucleoside phosphorylase deficiency in a patient with spastic paraplegia and recurrent infections
.
J Child Neurol
.
2007
;
22
(
6
):
741
-
743
.
14.
Parvaneh
N
,
Teimourian
S
,
Jacomelli
G
, et al
.
Novel mutations of NP in two patients with purine nucleoside phosphorylase deficiency
.
Clin Biochem
.
2008
;
41
(
4-5
):
350
-
352
.
15.
Habib Dzulkarnain
SM
,
Hashim
IF
,
Zainudeen
ZT
, et al
.
Purine nucleoside phosphorylase deficient severe combined immunodeficiencies: a case report and systematic review (1975-2022)
.
J Clin Immunol
.
2023
;
43
(
7
):
1623
-
1639
.
16.
la Marca
G
,
Giocaliere
E
,
Malvagia
S
, et al
.
Development and validation of a 2nd tier test for identification of purine nucleoside phosphorylase deficiency patients during expanded newborn screening by liquid chromatography-tandem mass spectrometry
.
Clin Chem Lab Med
.
2016
;
54
(
4
):
627
-
632
.
17.
Torun
B
,
Bilgin
A
,
Orhan
D
, et al
.
Combined immunodeficiency due to purine nucleoside phosphorylase deficiency: outcome of three patients
.
Eur J Med Genet
.
2022
;
65
(
3
):
104428
.
18.
Schejter
YD
,
Even-Or
E
,
Shadur
B
,
NaserEddin
A
,
Stepensky
P
,
Zaidman
I
.
The broad clinical spectrum and transplant results of PNP deficiency
.
J Clin Immunol
.
2020
;
40
(
1
):
123
-
130
.
19.
Parvaneh
N
,
Ashrafi
MR
,
Yeganeh
M
,
Pouladi
N
,
Sayarifar
F
,
Parvaneh
L
.
Progressive multifocal leukoencephalopathy in purine nucleoside phosphorylase deficiency
.
Brain Dev
.
2007
;
29
(
2
):
124
-
126
.
20.
Aytekin
C
,
Yuksek
M
,
Dogu
F
, et al
.
An unconditioned bone marrow transplantation in a child with purine nucleoside phosphorylase deficiency and its unique complication
.
Pediatr Transpl
.
2008
;
12
(
4
):
479
-
482
.
21.
Watson
AR
,
Evans
DI
,
Marsden
HB
,
Miller
V
,
Rogers
PA
.
Purine nucleoside phosphorylase deficiency associated with a fatal lymphoproliferative disorder
.
Arch Dis Child
.
1981
;
56
(
7
):
563
-
565
.
22.
Arduini
A
,
Marasco
E
,
Marucci
G
, et al
.
An unusual presentation of purine nucleoside phosphorylase deficiency mimicking systemic juvenile idiopathic arthritis complicated by macrophage activation syndrome
.
Pediatr Rheumatol Online J
.
2019
;
17
(
1
):
25
.
23.
Baguette
C
,
Vermylen
C
,
Brichard
B
, et al
.
Persistent developmental delay despite successful bone marrow transplantation for purine nucleoside phosphorylase deficiency
.
J Pediatr Hematol Oncol
.
2002
;
24
(
1
):
69
-
71
.
24.
Classen
CF
,
Schulz
AS
,
Sigl-Kraetzig
M
, et al
.
Successful HLA-identical bone marrow transplantation in a patient with PNP deficiency using busulfan and fludarabine for conditioning
.
Bone Marrow Transpl
.
2001
;
28
(
1
):
93
-
96
.
25.
Moallem
HJ
,
Taningo
G
,
Jiang
CK
,
Hirschhorn
R
,
Fikrig
S
.
Purine nucleoside phosphorylase deficiency: a new case report and identification of two novel mutations (Gly156A1a and Val217Ile), only one of which (Gly156A1a) is deleterious
.
Clin Immunol
.
2002
;
105
(
1
):
75
-
80
.
26.
Tabarki
B
,
Yacoub
M
,
Tlili
K
,
Trabelsi
A
,
Dogui
M
,
Essoussi
AS
.
Familial spastic paraplegia as the presenting manifestation in patients with purine nucleoside phosphorylase deficiency
.
J Child Neurol
.
2003
;
18
(
2
):
140
-
141
.
27.
Tsui
M
,
Biro
J
,
Chan
J
, et al
.
Purine nucleoside phosphorylase deficiency induces p53-mediated intrinsic apoptosis in human induced pluripotent stem cell-derived neurons
.
Sci Rep
.
2022
;
12
(
1
):
9084
.
28.
Delicou
S
,
Kitra-Roussou
V
,
Peristeri
J
, et al
.
Successful HLA-identical hematopoietic stem cell transplantation in a patient with purine nucleoside phosphorylase deficiency
.
Pediatr Transpl
.
2007
;
11
(
7
):
799
-
803
.
29.
Myers
LA
,
Hershfield
MS
,
Neale
WT
,
Escolar
M
,
Kurtzberg
J
.
Purine nucleoside phosphorylase deficiency (PNP-def) presenting with lymphopenia and developmental delay: successful correction with umbilical cord blood transplantation
.
J Pediatr
.
2004
;
145
(
5
):
710
-
712
.
30.
Eichinger
A
,
von Bernuth
H
,
Dedieu
C
, et al
.
Upfront enzyme replacement via erythrocyte transfusions for PNP deficiency
.
J Clin Immunol
.
2021
;
41
(
5
):
1112
-
1115
.
31.
Rich
KC
,
Majias
E
,
Fox
IH
.
Purine nucleoside phosphorylase deficiency: improved metabolic and immunologic function with erythrocyte transfusions
.
N Engl J Med
.
1980
;
303
(
17
):
973
-
977
.
32.
Hicks
ED
,
Hall
G
,
Hershfield
MS
, et al
.
Treatment with elapegademase restores immunity in infants with adenosine deaminase deficient severe combined immunodeficiency
.
J Clin Immunol
.
2024
;
44
(
5
):
107
.
33.
Cuvelier
GDE
,
Logan
BR
,
Prockop
SE
, et al
.
Outcomes following treatment for ADA-deficient severe combined immunodeficiency: a report from the PIDTC
.
Blood
.
2022
;
140
(
7
):
685
-
705
.
34.
Lankester
AC
,
Albert
MH
,
Booth
C
, et al
.
EBMT/ESID Inborn Errors Working Party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity
.
Bone Marrow Transpl
.
2021
;
56
(
9
):
2052
-
2062
.
35.
Shaw
P
,
Shizuru
J
,
Hoenig
M
,
Veys
P
;
IEWP-EBMT
.
Conditioning perspectives for primary immunodeficiency stem cell transplants
.
Front Pediatr
.
2019
;
7
:
434
.
36.
Ainsworth
P
.
Multiaxial classification of child and adolescent psychiatric disorders: the ICD-10 classification of mental and behavioural disorders in children and adolescents
.
Br J Psychiatry
.
1998
;
172
(
1
). 99-99.
37.
Thylefors
BI
.
The WHO programme for the prevention of deafness and hearing impairment
.
Scand Audiol Suppl
.
1996
;
42
:
21
-
22
.
38.
Stucki
G
,
Cieza
A
,
Ewert
T
.
Application of the International Classification of Functioning, Disability and Health (ICF) in clinical practice
.
Phys Rehab Kur Med
.
2001
;
11
(
6
):
231
-
232
.
39.
van Swieten
JC
,
Koudstaal
PJ
,
Visser
MC
,
Schouten
HJ
,
van Gijn
J
.
Interobserver agreement for the assessment of handicap in stroke patients
.
Stroke
.
1988
;
19
(
5
):
604
-
607
.
40.
Donceet
P
,
Brage
S
.
The implementation of the 'International Classification of Functioning, Disability and Health' (ICF) in disability assessment
.
Eur J Public Health
.
2007
;
17
:
67
.
41.
Dvorak
CC
,
Haddad
E
,
Heimall
J
, et al
.
The diagnosis of severe combined immunodeficiency (SCID): the Primary Immune Deficiency Treatment Consortium (PIDTC) 2022 definitions
.
J Allergy Clin Immunol
.
2023
;
151
(
2
):
539
-
546
.
42.
Dalal
I
,
Grunebaum
E
,
Cohen
A
,
Roifman
CM
.
Two novel mutations in a purine nucleoside phosphorylase (PNP)-deficient patient
.
Clin Genet
.
2001
;
59
(
6
):
430
-
437
.
43.
Somech
R
,
Lev
A
,
Simon
AJ
,
Hanna
S
,
Etzioni
A
.
T- and B-cell defects in a novel purine nucleoside phosphorylase mutation
.
J Allergy Clin Immunol
.
2012
;
130
(
2
):
539
-
542
.
44.
Yeates
L
,
Slatter
MA
,
Gennery
AR
.
Infusion of sibling marrow in a patient with purine nucleoside phosphorylase deficiency leads to split mixed donor chimerism and normal immunity
.
Front Pediatr
.
2017
;
5
:
143
.
45.
Thakar
MS
,
Logan
BR
,
Puck
JM
, et al
.
Measuring the effect of newborn screening on survival after haematopoietic cell transplantation for severe combined immunodeficiency: a 36-year longitudinal study from the Primary Immune Deficiency Treatment Consortium
.
Lancet
.
2023
;
402
(
10396
):
129
-
140
.
46.
Brodszki
N
,
Svensson
M
,
van Kuilenburg
AB
, et al
.
Novel genetic mutations in the first Swedish patient with purine nucleoside phosphorylase deficiency and clinical outcome after hematopoietic stem cell transplantation with HLA-matched unrelated donor
.
JIMD Rep
.
2015
;
24
:
83
-
89
.
47.
Broome
CB
,
Graham
ML
,
Saulsbury
FT
,
Hershfield
MS
,
Buckley
RH
.
Correction of purine nucleoside phosphorylase deficiency by transplantation of allogeneic bone marrow from a sibling
.
J Pediatr
.
1996
;
128
(
3
):
373
-
376
.
48.
Carpenter
PA
,
Ziegler
JB
,
Vowels
MR
.
Late diagnosis and correction of purine nucleoside phosphorylase deficiency with allogeneic bone marrow transplantation
.
Bone Marrow Transpl
.
1996
;
17
(
1
):
121
-
124
.
49.
Celmeli
F
,
Turkkahraman
D
,
Uygun
V
,
la Marca
G
,
Hershfield
M
,
Yesilipek
A
.
A successful unrelated peripheral blood stem cell transplantation with reduced intensity-conditioning regimen in a patient with late-onset purine nucleoside phosphorylase deficiency
.
Pediatr Transpl
.
2015
;
19
(
2
):
E47
-
E50
.
50.
Singh
V
.
Cross correction following haemopoietic stem cell transplant for purine nucleoside phosphorylase deficiency: engrafted donor-derived white blood cells provide enzyme to residual enzyme-deficient recipient cells
.
JIMD Rep
.
2012
;
6
:
39
-
42
.
51.
Dror
Y
,
Grunebaum
E
,
Hitzler
J
, et al
.
Purine nucleoside phosphorylase deficiency associated with a dysplastic marrow morphology
.
Pediatr Res
.
2004
;
55
(
3
):
472
-
477
.
52.
Kütükçüler
N
,
Bölük
E
,
Tökmeci
N
, et al
.
Recurrent infections, neurologic signs, low serum uric acid levels, and lymphopenia in childhood: purine nucleoside phosphorylase deficiency, an emergency for infants
.
Turk Pediatri Ars
.
2020
;
55
(
3
):
320
-
327
.
53.
Mansouri
A
,
Min
WX
,
Cole
CJ
, et al
.
Cerebellar abnormalities in purine nucleoside phosphorylase deficient mice
.
Neurobiol Dis
.
2012
;
47
(
2
):
201
-
209
.
54.
Schreib
KM
,
Bräm
DS
,
Zeilhofer
UB
, et al
.
Population pharmacokinetic modeling for twice-daily intravenous busulfan in a large cohort of pediatric patients undergoing hematopoietic stem cell transplantation-a 10-year single-center experience
.
Pharmaceutics
.
2023
;
16
(
1
):
0
.
55.
Chiesa
R
,
Standing
JF
,
Winter
R
, et al
.
Proposed therapeutic range of treosulfan in reduced toxicity pediatric allogeneic hematopoietic stem cell transplant conditioning: results from a prospective trial
.
Clin Pharmacol Ther
.
2020
;
108
(
2
):
264
-
273
.
56.
Admiraal
R
,
Nierkens
S
,
Bierings
MB
, et al
.
Improved survival with model-based dosing of anti-thymocyte globulin in pediatric hematopoietic cell transplantation
.
Blood Adv
.
2025
;
9
(
9
):
2344
-
2353
.
57.
Achini-Gutzwiller
FR
,
Schilham
MW
,
von Asmuth
EGJ
, et al
.
Exposure-response analysis of alemtuzumab in pediatric allogeneic HSCT for nonmalignant diseases: the ARTIC study
.
Blood Adv
.
2023
;
7
(
16
):
4462
-
4474
.
58.
Bertaina
A
,
Zecca
M
,
Buldini
B
, et al
.
Unrelated donor vs HLA-haploidentical alpha/beta T-cell- and B-cell-depleted HSCT in children with acute leukemia
.
Blood
.
2018
;
132
(
24
):
2594
-
2607
.
59.
Raymond
GV
,
Aubourg
P
,
Paker
A
, et al
.
Survival and functional outcomes in boys with cerebral adrenoleukodystrophy with and without hematopoietic stem cell transplantation
.
Biol Blood Marrow Transpl
.
2019
;
25
(
3
):
538
-
548
.

Author notes

U.S.H. and M.F. contributed equally to this study.

Data are available on request from the corresponding author, Tayfun Güngör (tayfun.guengoer@kispi.unizh.ch).

The online version of this article contains a data supplement.

There is a Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

Sign in via your Institution