Key Points
Macrophage ferroportin mRNA repression in response to soluble TLR ligands and heat-killed bacteria is controlled by NF-κB.
Inflammatory stimuli repress ferroportin transcription via HDAC recruitment to the ARE downstream NF-κB activation.
Anemia of inflammation is a prevalent comorbidity in patients with chronic inflammatory disorders. Inflammation causes hypoferremia and iron-restricted erythropoiesis by limiting ferroportin (FPN)–mediated iron export from macrophages that recycle senescent erythrocytes. Macrophage cell surface expression of FPN is reduced by hepcidin-induced degradation and/or by repression of FPN (Slc40a1) transcription via cytokine and Toll-like receptor (TLR) stimulation. Although the mechanisms underlying hepcidin-mediated control of FPN have been extensively studied, those inhibiting Slc40a1 messenger RNA (mRNA) expression remain unknown. We applied targeted RNA interference and pharmacological screens in macrophages stimulated with the TLR2/6 ligand FSL1 and identified critical signaling regulators of Slc40a1 mRNA repression downstream of TLRs and NF-κB signaling. Interestingly, the NF-κB regulatory hub is equally relevant for Slc40a1 mRNA repression driven by the TLR4 ligand lipopolysaccharide, the cytokine tumor necrosis factor β/lymphotoxin-alpha (LTA), and heat-killed bacteria. Mechanistically, macrophage stimulation with heat-killed Staphylococcus aureus recruits the histone deacetylases (HDACs) HDAC1 and HDAC3 to the antioxidant response element (ARE) located in the Slc40a1 promoter. Accordingly, pretreatment with a pan-HDAC inhibitor abrogates Slc40a1 mRNA repression in response to inflammatory cues, suggesting that HDACs act downstream of NF-κB to repress Slc40a1 transcription. Consistently, recruitment of HDAC1 and HDAC3 to the Slc40a1 ARE after stimulation with heat-killed S aureus is dependent on NF-κB signaling. These results support a model in which the ARE integrates the transcriptional responses of Slc40a1 triggered by signals from redox, metabolic, and inflammatory pathways. This work identifies the long-sought mechanism of Slc40a1 transcriptional downregulation upon inflammation, paving the way for therapeutic interventions at this critical juncture.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal