Abstract

Mantle cell lymphoma (MCL) is a rare (5%-7%), aggressive B-cell non-Hodgkin lymphoma with well-defined hallmarks (eg, cyclin D1, SOX11), and its expansion is highly dependent on the tumor microenvironment (TME). Parallel drastic progress in the understanding of lymphomagenesis and improved treatments led to a paradigm shift in this B-cell malignancy with now prolonged disease-free survival after intensive chemotherapy and anti-CD20-based maintenance. However, this toxic strategy is not applicable in frail or older patients, and a small but significant part of the cases present a refractory disease representing unmet medical needs. Importantly, the field has recently seen the rapid emergence of targeted and immune-based strategies with effective combinations relying on biological rationales to overcome malignant plasticity and intratumor heterogeneity. In this review, we expose how unraveling the biology of MCL allows to better understand the therapeutic resistances and to identify neo-vulnerabilities in tumors, which are essential to offer efficient novel strategies for high-risk patients. We first highlight the tumor intrinsic resistance mechanisms and associated Achilles heels within various pathways, such as NF-κB, mitochondrial apoptosis, DNA repair, and epigenetic regulators. We then place the tumor in its complex ecosystem to decipher the dialog with the multiple TME components and show how the resulting protumoral signals could be disrupted with innovative therapeutic strategies. Finally, we discuss how these progresses could be integrated into a personalized approach in MCL.

1.
Campo
E
,
Jaffe
ES
,
Cook
JR
, et al
.
The International Consensus classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee
.
Blood
.
2022
;
140
(
11
):
1229
-
1253
.
2.
Hermine
O
,
Jiang
L
,
Walewski
J
, et al
.
High-dose cytarabine and autologous stem-cell transplantation in mantle cell lymphoma: long-term follow-up of the Randomized Mantle Cell Lymphoma Younger Trial of the European Mantle Cell Lymphoma Network
.
J Clin Oncol
.
2023
;
41
(
3
):
479
-
484
.
3.
Yi
S
,
Yan
Y
,
Jin
M
, et al
.
Genomic and transcriptomic profiling reveals distinct molecular subsets associated with outcomes in mantle cell lymphoma
.
J Clin Invest
.
2022
;
132
(
3
):
e153283
.
4.
Saleh
K
,
Cheminant
M
,
Chiron
D
,
Burroni
B
,
Ribrag
V
,
Sarkozy
C
.
Tumor microenvironment and immunotherapy-based approaches in mantle cell lymphoma
.
Cancers
.
2022
;
14
(
13
):
3229
.
5.
Wang
ML
,
Jurczak
W
,
Jerkeman
M
, et al
.
Ibrutinib plus bendamustine and rituximab in untreated mantle-cell lymphoma
.
N Engl J Med
.
2022
;
386
(
26
):
2482
-
2494
.
6.
Wang
ML
,
Rule
S
,
Martin
P
, et al
.
Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2013
;
369
(
6
):
507
-
516
.
7.
Davids
MS
,
Roberts
AW
,
Seymour
JF
, et al
.
Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma
.
J Clin Oncol
.
2017
;
35
(
8
):
826
-
833
.
8.
Le Gouill
S
,
Morschhauser
F
,
Chiron
D
, et al
.
Ibrutinib, obinutuzumab, and venetoclax in relapsed and untreated patients with mantle cell lymphoma: a phase 1/2 trial
.
Blood
.
2021
;
137
(
7
):
877
-
887
.
9.
Tam
CS
,
Anderson
MA
,
Pott
C
, et al
.
Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
13
):
1211
-
1223
.
10.
Wang
M
,
Jurczak
W
,
Trněný
M
, et al
.
Ibrutinib combined with venetoclax in patients with relapsed/refractory mantle cell lymphoma: primary analysis results from the Randomized Phase 3 Sympatico Study [abstract]
.
Blood
.
2023
;
142
(
suppl 2
). LBA-2.
11.
Tivey
A
,
Shotton
R
,
Eyre
TA
, et al
.
Ibrutinib as first-line therapy for mantle cell lymphoma: a multicentre, real-world UK study
.
Blood Adv
.
2023
;
8
(
5
):
1209
-
1219
.
12.
Scheubeck
G
,
Jiang
L
,
Hermine
O
, et al
.
Clinical outcome of mantle cell lymphoma patients with high-risk disease (high-risk MIPI-c or high p53 expression)
.
Leukemia
.
2023
;
37
(
9
):
1887
-
1894
.
13.
Decombis
S
,
Bellanger
C
,
Le Bris
Y
, et al
.
CARD11 gain of function upregulates BCL2A1 expression and promotes resistance to targeted therapies combination in B-cell lymphoma
.
Blood
.
2023
;
142
(
18
):
1543
-
1555
.
14.
Agarwal
R
,
Chan
Y-C
,
Tam
CS
, et al
.
Dynamic molecular monitoring reveals that SWI–SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma
.
Nat Med
.
2019
;
25
(
1
):
119
-
129
.
15.
Karolová
J
,
Kazantsev
D
,
Svatoň
M
, et al
.
Sequencing-based analysis of clonal evolution of 25 mantle cell lymphoma patients at diagnosis and after failure of standard immunochemotherapy
.
Am J Hematol
.
2023
;
98
(
10
):
1627
-
1636
.
16.
Beà
S
,
Valdés-Mas
R
,
Navarro
A
, et al
.
Landscape of somatic mutations and clonal evolution in mantle cell lymphoma
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
45
):
18250
-
18255
.
17.
Hill
HA
,
Qi
X
,
Jain
P
, et al
.
Genetic mutations and features of mantle cell lymphoma: a systematic review and meta-analysis
.
Blood Adv
.
2020
;
4
(
13
):
2927
-
2938
.
18.
Nadeu
F
,
Martin-Garcia
D
,
Clot
G
, et al
.
Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes
.
Blood
.
2020
;
136
(
12
):
1419
-
1432
.
19.
Queirós
AC
,
Beekman
R
,
Vilarrasa-Blasi
R
, et al
.
Decoding the DNA methylome of mantle cell lymphoma in the light of the entire B cell lineage
.
Cancer Cell
.
2016
;
30
(
5
):
806
-
821
.
20.
Psyrri
A
,
Papageorgiou
S
,
Liakata
E
, et al
.
Phosphatidylinositol 3’-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma
.
Clin Cancer Res
.
2009
;
15
(
18
):
5724
-
5732
.
21.
Ma
MCJ
,
Tadros
S
,
Bouska
A
, et al
.
Subtype-specific and co-occurring genetic alterations in B-cell non-Hodgkin lymphoma
.
Haematologica
.
2022
;
107
(
3
):
690
-
701
.
22.
Alaggio
R
,
Amador
C
,
Anagnostopoulos
I
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1720
-
1748
.
23.
Martín-Garcia
D
,
Navarro
A
,
Valdés-Mas
R
, et al
.
CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1- mantle cell lymphoma
.
Blood
.
2019
;
133
(
9
):
940
-
951
.
24.
Delfau-Larue
M-H
,
Klapper
W
,
Berger
F
, et al
.
High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma
.
Blood
.
2015
;
126
(
5
):
604
-
611
.
25.
Jain
P
,
Dreyling
M
,
Seymour
JF
,
Wang
M
.
High-risk mantle cell lymphoma: definition, current challenges, and management
.
J Clin Oncol
.
2020
;
38
(
36
):
4302
-
4316
.
26.
Leonard
JP
,
LaCasce
AS
,
Smith
MR
, et al
.
Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma
.
Blood
.
2012
;
119
(
20
):
4597
-
4607
.
27.
Martin
P
,
Bartlett
NL
,
Blum
KA
, et al
.
A phase 1 trial of ibrutinib plus palbociclib in previously treated mantle cell lymphoma
.
Blood
.
2019
;
133
(
11
):
1201
-
1204
.
28.
Chiron
D
,
Di Liberto
M
,
Martin
P
, et al
.
Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma
.
Cancer Discov
.
2014
;
4
(
9
):
1022
-
1035
.
29.
Malarikova
D
,
Jorda
R
,
Dolníková
A
, et al
.
Cyclin-dependent kinase 4/6 inhibitor palbociclib synergizes with BH3-mimetics in experimental models of relapsed/refractory mantle cell lymphoma [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
5996
-
5997
.
30.
Martin
E
,
Palmic
N
,
Sanquer
S
, et al
.
CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation
.
Nature
.
2014
;
510
(
7504
):
288
-
292
.
31.
Durand
R
,
Bellanger
C
,
Kervoëlen
C
, et al
.
Selective pharmacologic targeting of CTPS1 shows single-agent activity and synergizes with BCL2 inhibition in aggressive mantle cell lymphoma
.
Haematologica
.
2024
;
109
(
8
):
2574
-
2584
.
32.
Ek
S
,
Dictor
M
,
Jerkeman
M
,
Jirström
K
,
Borrebaeck
CAK
.
Nuclear expression of the non–B-cell lineage Sox11 transcription factor identifies mantle cell lymphoma
.
Blood
.
2008
;
111
(
2
):
800
-
805
.
33.
Mohanty
A
,
Sandoval
N
,
Phan
A
, et al
.
Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma
.
Blood
.
2019
;
133
(
4
):
306
-
318
.
34.
Vegliante
MC
,
Palomero
J
,
Pérez-Galán
P
, et al
.
SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma
.
Blood
.
2013
;
121
(
12
):
2175
-
2185
.
35.
Kuo
P-Y
,
Jatiani
SS
,
Rahman
AH
, et al
.
SOX11 augments BCR signaling to drive MCL-like tumor development
.
Blood
.
2018
;
131
(
20
):
2247
-
2255
.
36.
Balsas
P
,
Veloza
L
,
Clot
G
, et al
.
SOX11, CD70, and Treg cells configure the tumor immune microenvironment of aggressive mantle cell lymphoma
.
Blood
.
2021
;
138
(
22
):
2202
-
2215
.
37.
Balsas
P
,
Palomero
J
,
Eguileor
Á
, et al
.
SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma
.
Blood
.
2017
;
130
(
4
):
501
-
513
.
38.
Jatiani
SS
,
Christie
S
,
Leshchenko
VV
, et al
.
SOX11 inhibitors are cytotoxic in mantle cell lymphoma
.
Clin Cancer Res
.
2021
;
27
(
16
):
4652
-
4663
.
39.
Morsy
MHA
,
Lilienthal
I
,
Lord
M
, et al
.
SOX11 is a novel binding partner and endogenous inhibitor of SAMHD1 ara-CTPase activity in mantle cell lymphoma
.
Blood
.
2024
;
143
(
19
):
1953
-
1964
.
40.
Chiron
D
,
Bellanger
C
,
Papin
A
, et al
.
Rational targeted therapies to overcome microenvironment-dependent expansion of mantle cell lymphoma
.
Blood
.
2016
;
128
(
24
):
2808
-
2818
.
41.
Saba
NS
,
Liu
D
,
Herman
SEM
, et al
.
Pathogenic role of B-cell receptor signaling and canonical NF-κB activation in mantle cell lymphoma
.
Blood
.
2016
;
128
(
1
):
82
-
92
.
42.
Decombis
S
,
Papin
A
,
Bellanger
C
, et al
.
The IL32/BAFF axis supports prosurvival dialogs in the lymphoma ecosystem and is disrupted by NIK inhibition
.
Haematologica
.
2022
;
107
(
12
):
2905
-
2917
.
43.
Rahal
R
,
Frick
M
,
Romero
R
, et al
.
Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma
.
Nat Med
.
2014
;
20
(
1
):
87
-
92
.
44.
Le Bris
Y
,
Magrangeas
F
,
Moreau
A
, et al
.
Whole genome copy number analysis in search of new prognostic biomarkers in first line treatment of mantle cell lymphoma. A study by the LYSA group
.
Hematol Oncol
.
2020
;
38
(
4
):
446
-
455
.
45.
Haselager
MV
,
Eldering
E
.
The therapeutic potential of targeting NIK in B cell malignancies
.
Front Immunol
.
2022
;
13
:
930986
.
46.
Wang
E
,
Mi
X
,
Thompson
MC
, et al
.
Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors
.
N Engl J Med
.
2022
;
386
(
8
):
735
-
743
.
47.
Dobrovolsky
D
,
Wang
ES
,
Morrow
S
, et al
.
Bruton tyrosine kinase degradation as a therapeutic strategy for cancer
.
Blood
.
2019
;
133
(
9
):
952
-
961
.
48.
Chiron
D
,
Dousset
C
,
Brosseau
C
, et al
.
Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma
.
Oncotarget
.
2015
;
6
(
11
):
8750
-
8759
.
49.
Wu
C
,
De Miranda
NF
,
Chen
L
, et al
.
Genetic heterogeneity in primary and relapsed mantle cell lymphomas: impact of recurrent CARD11 mutations
.
Oncotarget
.
2016
;
7
(
25
):
38180
-
38190
.
50.
Dai
B
,
Grau
M
,
Juilland
M
, et al
.
B-cell receptor–driven MALT1 activity regulates MYC signaling in mantle cell lymphoma
.
Blood
.
2017
;
129
(
3
):
333
-
346
.
51.
Jiang
VC
,
Liu
Y
,
Lian
J
, et al
.
Cotargeting of BTK and MALT1 overcomes resistance to BTK inhibitors in mantle cell lymphoma
.
J Clin Invest
.
2023
;
133
(
3
):
e165694
.
52.
Rodrigues
JM
,
Hollander
P
,
Schmidt
L
, et al
.
MYC protein is a high-risk factor in mantle cell lymphoma and identifies cases beyond morphology, proliferation and TP53/p53 – a Nordic Lymphoma Group study
.
Haematologica
.
2024
;
109
(
4
):
1171
-
1183
.
53.
Wimberger
N
,
Ober
F
,
Avar
G
, et al
.
Oncogene-induced MALT1 protease activity drives posttranscriptional gene expression in malignant lymphomas
.
Blood
.
2023
;
142
(
23
):
1985
-
2001
.
54.
Beà
S
,
Salaverria
I
,
Armengol
L
, et al
.
Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling
.
Blood
.
2009
;
113
(
13
):
3059
-
3069
.
55.
Stilgenbauer
S
,
Nickolenko
J
,
Wilhelm
J
, et al
.
Expressed sequences as candidates for a novel tumor suppressor gene at band 13q14 in B-cell chronic lymphocytic leukemia and mantle cell lymphoma
.
Oncogene
.
1998
;
16
(
14
):
1891
-
1897
.
56.
Touzeau
C
,
Dousset
C
,
Bodet
L
, et al
.
ABT-737 induces apoptosis in mantle cell lymphoma cells with a Bcl-2 high /Mcl-1 low profile and synergizes with other antineoplastic agents
.
Clin Cancer Res
.
2011
;
17
(
18
):
5973
-
5981
.
57.
Zhao
S
,
Kanagal-Shamanna
R
,
Navsaria
L
, et al
.
Efficacy of venetoclax in high risk relapsed mantle cell lymphoma (MCL) - outcomes and mutation profile from venetoclax resistant MCL patients
.
Am J Hematol
.
2020
;
95
(
6
):
623
-
629
.
58.
Eyre
TA
,
Walter
HS
,
Iyengar
S
, et al
.
Efficacy of venetoclax monotherapy in patients with relapsed, refractory mantle cell lymphoma after Bruton tyrosine kinase inhibitor therapy
.
Haematologica
.
2019
;
104
(
2
):
e68
-
e71
.
59.
Zhao
X
,
Ren
Y
,
Lawlor
M
, et al
.
BCL2 amplicon loss and transcriptional remodeling drives ABT-199 resistance in B cell lymphoma models
.
Cancer Cell
.
2019
;
35
(
5
):
752
-
766.e9
.
60.
Blombery
P
,
Anderson
MA
,
Gong
J
, et al
.
Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia
.
Cancer Discov
.
2019
;
9
(
3
):
342
-
353
.
61.
Khoury
JD
,
Medeiros
LJ
,
Rassidakis
GZ
,
McDonnell
TJ
,
Abruzzo
LV
,
Lai
R
.
Expression of Mcl-1 in mantle cell lymphoma is associated with high-grade morphology, a high proliferative state, and p53 overexpression
.
J Pathol
.
2003
;
199
(
1
):
90
-
97
.
62.
Prukova
D
,
Andera
L
,
Nahacka
Z
, et al
.
Cotargeting of BCL2 with venetoclax and MCL1 with S63845 is synthetically lethal in vivo in relapsed mantle cell lymphoma
.
Clin Cancer Res
.
2019
;
25
(
14
):
4455
-
4465
.
63.
Diepstraten
ST
,
Anderson
MA
,
Czabotar
PE
,
Lessene
G
,
Strasser
A
,
Kelly
GL
.
The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs
.
Nat Rev Cancer
.
2022
;
22
(
1
):
45
-
64
.
64.
Thus
YJ
,
De Rooij
MFM
,
Swier
N
, et al
.
Inhibition of casein kinase 2 sensitizes mantle cell lymphoma to venetoclax through MCL-1 downregulation
.
Haematologica
.
2023
;
108
(
3
):
797
-
810
.
65.
Zhao
X
,
Bodo
J
,
Chen
R
, et al
.
Inhibition of cyclin-dependent kinase 9 synergistically enhances venetoclax activity in mantle cell lymphoma
.
EJHaem
.
2020
;
1
(
1
):
161
-
169
.
66.
Thus
YJ
,
Eldering
E
,
Kater
AP
,
Spaargaren
M
.
Tipping the balance: toward rational combination therapies to overcome venetoclax resistance in mantle cell lymphoma
.
Leukemia
.
2022
;
36
(
9
):
2165
-
2176
.
67.
Durand
R
,
Descamps
G
,
Bellanger
C
, et al
.
A p53 score derived from TP53 CRISPR/Cas9 HMCLs predicts survival and reveals a major role of BAX in the response to BH3 mimetics
.
Blood
.
2023
;
143
(
13
):
1242
-
1258
.
68.
Tessoulin
B
,
Eveillard
M
,
Lok
A
, et al
.
p53 dysregulation in B-cell malignancies: more than a single gene in the pathway to hell
.
Blood Rev
.
2017
;
31
(
4
):
251
-
259
.
69.
Malarikova
D
,
Berkova
A
,
Obr
A
, et al
.
Concurrent TP53 and CDKN2A gene aberrations in newly diagnosed mantle cell lymphoma correlate with chemoresistance and call for innovative upfront therapy
.
Cancers
.
2020
;
12
(
8
):
2120
.
70.
Eskelund
CW
,
Dahl
C
,
Hansen
JW
, et al
.
TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy
.
Blood
.
2017
;
130
(
17
):
1903
-
1910
.
71.
Carras
S
,
Torroja
A
,
Emadali
A
, et al
.
Long-term analysis of the RiBVD phase II trial reveals the unfavorable impact of TP53 mutations and hypoalbuminemia in older adults with mantle cell lymphoma; for the LYSA group
.
Haematologica
.
2024
;
109
(
6
):
1857
-
1865
.
72.
Obr
A
,
Klener
P
,
Furst
T
, et al
.
A high TP53 mutation burden is a strong predictor of primary refractory mantle cell lymphoma
.
Br J Haematol
.
2020
;
191
(
5
):
e103
-
e106
.
73.
Ho
CI
,
Wu
D
,
Wu
Q
, et al
.
Heterogeneity of TP53 mutations in mantle cell lymphoma- challenges in risk stratification and subclassification [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
3047
.
74.
Rule
S
,
Dreyling
M
,
Goy
A
, et al
.
Ibrutinib for the treatment of relapsed/refractory mantle cell lymphoma: extended 3.5-year follow up from a pooled analysis
.
Haematologica
.
2019
;
104
(
5
):
e211
-
e214
.
75.
Eskelund
CW
,
Albertsson-Lindblad
A
,
Kolstad
A
, et al
.
Lenalidomide plus bendamustine-rituximab does not overcome the adverse impact of TP53 mutations in mantle cell lymphoma
.
Haematologica
.
2018
;
103
(
11
):
e541
-
e543
.
76.
Jerkeman
M
,
Eskelund
CW
,
Hutchings
M
, et al
.
Ibrutinib, lenalidomide, and rituximab in relapsed or refractory mantle cell lymphoma (PHILEMON): a multicentre, open-label, single-arm, phase 2 trial
.
Lancet Haematol
.
2018
;
5
(
3
):
e109
-
e116
.
77.
Ruan
J
,
Leonard
JP
,
Chen
GZ
, et al
.
Phase 2 trial of acalabrutinib-lenalidomide-rituximab (ALR) with real-time monitoring of MRD in patients with treatment-naïve mantle cell lymphoma [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
175
-
177
.
78.
Kumar
A
,
Soumerai
J
,
Abramson
JS
, et al
.
A multicenter phase 2 trial of zanubrutinib, obinutuzumab, and venetoclax (BOVen) in patients with treatment-naïve, TP53-mutant mantle cell lymphoma [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
738
.
79.
Wang
Y
,
Jain
P
,
Locke
FL
, et al
.
Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: results from the US Lymphoma CAR T Consortium
.
J Clin Oncol
.
2023
;
41
(
14
):
2594
-
2606
.
80.
Mareckova
A
,
Malcikova
J
,
Tom
N
, et al
.
ATM and TP53 mutations show mutual exclusivity but distinct clinical impact in mantle cell lymphoma patients
.
Leuk Lymphoma
.
2019
;
60
(
6
):
1420
-
1428
.
81.
Koff
JL
,
Kositsky
R
,
Jaye
DL
, et al
.
Mutations of ATM confer a risk of inferior survival in patients with TP53-wild type mantle cell lymphoma [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
3500
-
3503
.
82.
O’Neil
NJ
,
Bailey
ML
,
Hieter
P
.
Synthetic lethality and cancer
.
Nat Rev Genet
.
2017
;
18
(
10
):
613
-
623
.
83.
Menezes
DL
,
Holt
J
,
Tang
Y
, et al
.
A synthetic lethal screen reveals enhanced sensitivity to ATR inhibitor treatment in mantle cell lymphoma with ATM loss-of-function
.
Mol Cancer Res
.
2015
;
13
(
1
):
120
-
129
.
84.
Kwok
M
,
Davies
N
,
Agathanggelou
A
, et al
.
ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells
.
Blood
.
2016
;
127
(
5
):
582
-
595
.
85.
Restelli
V
,
Lupi
M
,
Chilà
R
, et al
.
DNA damage response inhibitor combinations exert synergistic antitumor activity in aggressive B-cell lymphomas
.
Mol Cancer Ther
.
2019
;
18
(
7
):
1255
-
1264
.
86.
Chilà
R
,
Basana
A
,
Lupi
M
, et al
.
Combined inhibition of Chk1 and Wee1 as a new therapeutic strategy for mantle cell lymphoma
.
Oncotarget
.
2015
;
6
(
5
):
3394
-
3408
.
87.
Curtis
A
,
Rueter
J
,
Rajan
S
,
Zhang
R
,
Shopland
L
.
Additive and synergistic inhibition of mantle cell lymphoma cell growth by combining olaparib with ibrutinib
.
J Cell Biochem
.
2018
;
119
(
7
):
5843
-
5851
.
88.
Soumerai
JD
,
Zelenetz
AD
,
Moskowitz
CH
, et al
.
The PARP inhibitor veliparib can be safely added to bendamustine and rituximab and has preliminary evidence of activity in B-cell lymphoma
.
Clin Cancer Res
.
2017
;
23
(
15
):
4119
-
4126
.
89.
Keats
JA
,
Lee
A
,
Cunniff
JC
, et al
.
Abstract 1161: EZH2 inhibitor tazemetostat demonstrates activity in preclinical models of Bruton’s tyrosine kinase inhibitor-resistant relapsed/refractory mantle cell lymphoma
.
Cancer Res
.
2021
;
81
(
suppl 13
):
1161
.
90.
Sun
B
,
Shah
B
,
Fiskus
W
, et al
.
Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib
.
Blood
.
2015
;
126
(
13
):
1565
-
1574
.
91.
Tarantelli
C
,
Bernasconi
E
,
Gaudio
E
, et al
.
BET bromodomain inhibitor birabresib in mantle cell lymphoma: in vivo activity and identification of novel combinations to overcome adaptive resistance
.
ESMO Open
.
2018
;
3
(
6
):
e000387
.
92.
Manni
S
,
Saggin
L
,
Pesavento
M
, et al
.
Combined inhibition of protein kinase CSNK2 and BET proteins as a novel therapeutic strategy for mantle cell lymphoma [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
5778
.
93.
Sun
B
,
Fiskus
W
,
Qian
Y
, et al
.
BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells
.
Leukemia
.
2018
;
32
(
2
):
343
-
352
.
94.
Yazbeck
V
,
Shafer
D
,
Perkins
EB
, et al
.
A phase II trial of bortezomib and vorinostat in mantle cell lymphoma and diffuse large B-cell lymphoma
.
Clin Lymphoma Myeloma Leuk
.
2018
;
18
(
9
):
569
-
575.e1
.
95.
Kirschbaum
M
,
Frankel
P
,
Popplewell
L
, et al
.
Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma
.
J Clin Oncol
.
2011
;
29
(
9
):
1198
-
1203
.
96.
Evens
AM
,
Balasubramanian
S
,
Vose
JM
, et al
.
A phase I/II multicenter, open-label study of the oral histone deacetylase inhibitor abexinostat in relapsed/refractory lymphoma
.
Clin Cancer Res
.
2016
;
22
(
5
):
1059
-
1066
.
97.
Spurgeon
SE
,
Sharma
K
,
Claxton
DF
, et al
.
Phase 1-2 study of vorinostat (SAHA), cladribine and rituximab (SCR) in relapsed B-cell non-Hodgkin lymphoma and previously untreated mantle cell lymphoma
.
Br J Haematol
.
2019
;
186
(
6
):
845
-
854
.
98.
Li
J
,
Kulis
M
,
Riva
A
, et al
.
Activating NSD2 mutations drive oncogenic reprogramming by disturbing epigenetic landscape in mantle cell lymphoma [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
2771
.
99.
Che
Y
,
Liu
Y
,
Yao
Y
, et al
.
Exploiting PRMT5 as a target for combination therapy in mantle cell lymphoma characterized by frequent ATM and TP53 mutations
.
Blood Cancer J
.
2023
;
13
(
1
):
27
. 14.
100.
Sloan
SL
,
Brown
F
,
Long
M
, et al
.
PRMT5 supports multiple oncogenic pathways in mantle cell lymphoma
.
Blood
.
2023
;
142
(
10
):
887
-
902
.
101.
Brown-Burke
F
,
Hwang
I
,
Sloan
S
, et al
.
PRMT5 inhibition drives therapeutic vulnerability to combination treatment with BCL-2 inhibition in mantle cell lymphoma
.
Blood Adv
.
2023
;
7
(
20
):
6211
-
6224
.
102.
Long
ME
,
Koirala
S
,
Sloan
S
, et al
.
Resistance to PRMT5-targeted therapy in mantle cell lymphoma
.
Blood Adv
.
2024
;
8
(
1
):
150
-
163
.
103.
Li
X-Y
,
Li
Y
,
Zhang
L
,
Liu
X
,
Feng
L
,
Wang
X
.
The antitumor effects of arsenic trioxide in mantle cell lymphoma via targeting Wnt/β-catenin pathway and DNA methyltransferase-1
.
Oncol Rep
.
2017
;
38
(
5
):
3114
-
3120
.
104.
Liu
Y
,
Kimpara
S
,
Hoang
NM
, et al
.
EGR1-mediated metabolic reprogramming to oxidative phosphorylation contributes to ibrutinib resistance in B-cell lymphoma
.
Blood
.
2023
;
142
(
22
):
1879
-
1894
.
105.
Hoang
NM
,
Liu
Y
,
Rui
L
.
DNMT3A-mediated oxidative phosphorylation and ibrutinib resistance in mantle cell lymphoma [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
8762
-
8763
.
106.
Zhang
L
,
Yao
Y
,
Zhang
S
, et al
.
Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma
.
Sci Transl Med
.
2019
;
11
(
491
):
eaau1167
.
107.
Pieters
T
,
T’Sas
S
,
Vanhee
S
, et al
.
Cyclin D2 overexpression drives B1a-derived MCL-like lymphoma in mice
.
J Exp Med
.
2021
;
218
(
10
):
e20202280
.
108.
Thurner
L
,
Hartmann
S
,
Fadle
N
, et al
.
LRPAP1 is a frequent proliferation-inducing antigen of BCRs of mantle cell lymphomas and can be used for specific therapeutic targeting
.
Leukemia
.
2019
;
33
(
1
):
148
-
158
.
109.
Thurner
L
,
Fadle
N
,
Bittenbring
JT
, et al
.
LRPAP1 autoantibodies in mantle cell lymphoma are associated with superior outcome
.
Blood
.
2021
;
137
(
23
):
3251
-
3258
.
110.
Chang
BY
,
Francesco
M
,
De Rooij
MFM
, et al
.
Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients
.
Blood
.
2013
;
122
(
14
):
2412
-
2424
.
111.
Furtado
M
,
Wang
ML
,
Munneke
B
,
McGreivy
J
,
Beaupre
DM
,
Rule
S
.
Ibrutinib-associated lymphocytosis corresponds to bone marrow involvement in mantle cell lymphoma
.
Br J Haematol
.
2015
;
170
(
1
):
131
-
134
.
112.
Kurtova
AV
,
Tamayo
AT
,
Ford
RJ
,
Burger
JA
.
Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting
.
Blood
.
2009
;
113
(
19
):
4604
-
4613
.
113.
Medina
DJ
,
Goodell
L
,
Glod
J
,
Gélinas
C
,
Rabson
AB
,
Strair
RK
.
Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor B pathways
.
Haematologica
.
2012
;
97
(
8
):
1255
-
1263
.
114.
Schweighoffer
E
,
Vanes
L
,
Nys
J
, et al
.
The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway
.
Immunity
.
2013
;
38
(
3
):
475
-
488
.
115.
Zhao
X
,
Lwin
T
,
Silva
A
, et al
.
Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma
.
Nat Commun
.
2017
;
8
(
1
):
14920
.
116.
McWilliams
EM
,
Lucas
CR
,
Chen
T
, et al
.
Anti–BAFF-R antibody VAY-736 demonstrates promising preclinical activity in CLL and enhances effectiveness of ibrutinib
.
Blood Adv
.
2019
;
3
(
3
):
447
-
460
.
117.
Dong
Z
,
Song
JY
,
Thieme
E
, et al
.
Generation of a humanized afucosylated BAFF-R antibody with broad activity against human B-cell malignancies
.
Blood Adv
.
2023
;
7
(
6
):
918
-
932
.
118.
Zhang
K
,
Roy
NK
,
Vicioso
Y
, et al
.
BAFF receptor antibody for mantle cell lymphoma therapy
.
OncoImmunology
.
2021
;
10
(
1
):
1893501
.
119.
Rudelius
M
,
Rosenfeldt
MT
,
Leich
E
, et al
.
Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment
.
Haematologica
.
2018
;
103
(
1
):
116
-
125
.
120.
Jain
P
,
Nomie
K
,
Kotlov
N
, et al
.
Immune-depleted tumor microenvironment is associated with poor outcomes and BTK inhibitor resistance in mantle cell lymphoma
.
Blood Cancer J
.
2023
;
13
(
1
):
156
.
121.
Nygren
L
,
Wasik
AM
,
Baumgartner-Wennerholm
S
, et al
.
T-cell levels are prognostic in mantle cell lymphoma
.
Clin Cancer Res
.
2014
;
20
(
23
):
6096
-
6104
.
122.
Wang
L
,
Qian
J
,
Lu
Y
, et al
.
Immune evasion of mantle cell lymphoma: expression of B7-H1 leads to inhibited T-cell response to and killing of tumor cells
.
Haematologica
.
2013
;
98
(
9
):
1458
-
1466
.
123.
Josefsson
SE
,
Beiske
K
,
Blaker
YN
, et al
.
TIGIT and PD-1 mark intratumoral T cells with reduced effector function in B-cell non-Hodgkin lymphoma
.
Cancer Immunol Res
.
2019
;
7
(
3
):
355
-
362
.
124.
Khodadoust
MS
,
Olsson
N
,
Wagar
LE
, et al
.
Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens
.
Nature
.
2017
;
543
(
7647
):
723
-
727
.
125.
Araujo-Ayala
F
,
Dobaño-López
C
,
Valero
JG
, et al
.
A novel patient-derived 3D model recapitulates mantle cell lymphoma lymph node signaling, immune profile and in vivo ibrutinib responses
.
Leukemia
.
2023
;
37
(
6
):
1311
-
1323
.
126.
Tessoulin
B
,
Papin
A
,
Gomez-Bougie
P
, et al
.
BCL2-family dysregulation in B-cell malignancies: from gene expression regulation to a targeted therapy biomarker
.
Front Oncol
.
2018
;
8
:
645
.
127.
Ansell
SM
,
Lesokhin
AM
,
Borrello
I
, et al
.
PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma
.
N Engl J Med
.
2015
;
372
(
4
):
311
-
319
.
128.
Huang
Z
,
Chavda
VP
,
Bezbaruah
R
,
Dhamne
H
,
Yang
DH
,
Zhao
HB
.
CAR T-Cell therapy for the management of mantle cell lymphoma
.
Mol Cancer
.
2023
;
22
(
1
):
67
.
129.
Jain
N
,
Mamgain
M
,
Chowdhury
SM
, et al
.
Beyond Bruton’s tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody–drug conjugates, CAR T-cells, and novel agents
.
J Hematol Oncol
.
2023
;
16
(
1
):
99
.
130.
Townsend
W
,
Leong
S
,
Tucker
D
, et al
.
First-in-human phase I trial of a ROR1 targeting bispecific T cell engager (NVG-111) in combination with ibrutinib or as monotherapy in subjects with relapsed refractory chronic lymphocytic leukaemia (CLL) and mantle cell lymphoma (MCL) [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
4162
-
4163
.
131.
Jiang
VC
,
Hao
D
,
Jain
P
, et al
.
TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma
.
Mol Cancer
.
2022
;
21
(
1
):
185
.
132.
Boissard
F
,
Laurent
C
,
Ramsay
AG
, et al
.
Nurse-like cells impact on disease progression in chronic lymphocytic leukemia
.
Blood Cancer J
.
2016
;
6
(
1
):
e381
.
133.
Quail
DF
,
Bowman
RL
,
Akkari
L
, et al
.
The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas
.
Science
.
2016
;
352
(
6288
):
aad3018
.
134.
Rodrigues
JM
,
Nikkarinen
A
,
Hollander
P
, et al
.
Infiltration of CD163-, PD-L1- and FoxP3-positive cells adversely affects outcome in patients with mantle cell lymphoma independent of established risk factors
.
Br J Haematol
.
2021
;
193
(
3
):
520
-
531
.
135.
Nikkarinen
A
,
Lokhande
L
,
Amini
R-M
, et al
.
Soluble CD163 predicts outcome in both chemoimmunotherapy and targeted therapy–treated mantle cell lymphoma
.
Blood Adv
.
2023
;
7
(
18
):
5304
-
5313
.
136.
Papin
A
,
Tessoulin
B
,
Bellanger
C
, et al
.
CSF1R and BTK inhibitions as novel strategies to disrupt the dialog between mantle cell lymphoma and macrophages
.
Leukemia
.
2019
;
33
(
10
):
2442
-
2453
.
137.
Le
K
,
Sun
J
,
Khawaja
H
, et al
.
Mantle cell lymphoma polarizes tumor-associated macrophages into M2-like macrophages, which in turn promote tumorigenesis
.
Blood Adv
.
2021
;
5
(
14
):
2863
-
2878
.
138.
Aroldi
A
,
Mauri
M
,
Ramazzotti
D
, et al
.
Effects of blocking CD24 and CD47 ‘don’t eat me’ signals in combination with rituximab in mantle-cell lymphoma and chronic lymphocytic leukaemia
.
J Cell Mol Med
.
2023
;
27
(
20
):
3053
-
3064
.
139.
Wang
M
,
Munoz
J
,
Goy
A
, et al
.
Three-year follow-up of KTE-X19 in patients with relapsed/refractory mantle cell lymphoma, including high-risk subgroups, in the ZUMA-2 Study
.
J Clin Oncol
.
2023
;
41
(
3
):
555
-
567
.
140.
Sarkozy
C
,
Callanan
M
,
Thieblemont
C
, et al
.
Obinutuzumab versus rituximab in transplant eligible untreated MCL patients, a matching comparison between the Lyma and Lyma-101 Trials [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
980
.
141.
Phillips
TJ
,
Dickinson
M
,
Morschhauser
F
, et al
.
Glofitamab monotherapy induces high complete response rates in patients with heavily pretreated relapsed or refractory mantle cell lymphoma [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
178
-
180
.
142.
Wang
ML
,
Assouline
S
,
Kamdar
M
, et al
.
Fixed duration mosunetuzumab plus polatuzumab vedotin has promising efficacy and a manageable safety profile in patients with BTKi relapsed/refractory mantle cell lymphoma: initial results from a phase Ib/II study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
734
.
143.
Wang
M
,
Barrientos
JC
,
Furman
RR
, et al
.
VLS-101, a ROR1-targeting antibody-drug conjugate, demonstrates a predictable safety profile and clinical efficacy in patients with heavily pretreated mantle cell lymphoma and diffuse large B-cell lymphoma [abstract]
.
Blood
.
2020
;
136
(
suppl 1
):
13
-
14
.
144.
Reimann
M
,
Schrezenmeier
J
,
Richter-Pechanska
P
, et al
.
Adaptive T-cell immunity controls senescence-prone MyD88- or CARD11-mutant B-cell lymphomas
.
Blood
.
2021
;
137
(
20
):
2785
-
2799
.
145.
Yuan
H
,
Nishikori
M
,
Otsuka
Y
,
Arima
H
,
Kitawaki
T
,
Takaori-Kondo
A
.
The EZH2 inhibitor tazemetostat upregulates the expression of CCL17/TARC in B-cell lymphoma and enhances T-cell recruitment
.
Cancer Sci
.
2021
;
112
(
11
):
4604
-
4616
.
146.
Isshiki
Y
,
Porazzi
P
,
Chen
X
, et al
.
EZH2 inhibitors enhance CART cell quality, efficacy, in vivo homing, tumor cell binding and killing of fully syngeneic primary B cell lymphomas, as well as reprogramming lymphoma cells to a highly immunogenic and T cell adherent phenotype [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
432
.
147.
Ennishi
D
,
Takata
K
,
Béguelin
W
, et al
.
Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition
.
Cancer Discov
.
2019
;
9
(
4
):
546
-
563
.
148.
Celay
J
,
Recalde
M
,
Revuelta
MV
, et al
.
Remodeling of the immune microenvironment by oncogenic MYD88 dictates immunotherapy responses across indolent and aggressive B-cell lymphomas [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
431
.
149.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
150.
Steen
CB
,
Luca
BA
,
Esfahani
MS
, et al
.
The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma
.
Cancer Cell
.
2021
;
39
(
10
):
1422
-
1437.e10
.
151.
Scott
DW
,
Abrisqueta
P
,
Wright
GW
, et al
.
New molecular assay for the proliferation signature in mantle cell lymphoma applicable to formalin-fixed paraffin-embedded biopsies
.
J Clin Oncol
.
2017
;
35
(
15
):
1668
-
1677
.
152.
Zhang
M-C
,
Tian
S
,
Fu
D
, et al
.
Genetic subtype-guided immunochemotherapy in diffuse large B cell lymphoma: the randomized GUIDANCE-01 trial
.
Cancer Cell
.
2023
;
41
(
10
):
1705
-
1716.e5
.
153.
Wang
M
,
Ramchandren
R
,
Chen
R
, et al
.
Concurrent ibrutinib plus venetoclax in relapsed/refractory mantle cell lymphoma: the safety run-in of the phase 3 SYMPATICO study
.
J Hematol Oncol
.
2021
;
14
(
1
):
179
.
You do not currently have access to this content.
Sign in via your Institution