• Patients with severe COVID-19 make prothrombotic antibodies linked to platelet activation, inflammation, and tissue damage markers.

  • A subset of antibodies to the RBD of the spike protein contributes to the pool of prothrombotic antibodies.

Abstract

Thromboembolic complication is common in severe coronavirus disease 2019 (COVID-19), leading to an investigation into the presence of prothrombotic antibodies akin to those found in heparin-induced thrombocytopenia (HIT). In a study of samples from 130 hospitalized patients, collected 3.6 days after COVID-19 diagnosis, 80% had immunoglobulin G (IgG) antibodies recognizing complexes of heparin and platelet factor 4 (PF4; PF4/H), and 41% had antibodies inducing PF4-dependent P-selectin expression in CpG oligodeoxynucleotide–treated normal platelets. Unlike HIT, both PF4/H-reactive and platelet-activating antibodies were found in patients with COVID-19 regardless of recent heparin exposure. Notably, PF4/H-reactive IgG antibodies correlated with those targeting the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike protein. Moreover, introducing exogenous RBD to or removing RBD-reactive IgG from COVID-19 plasma or IgG purified from COVID-19 plasma significantly reduced their ability to activate platelets. RBD-specific antibodies capable of platelet activation were cloned from peripheral blood B cells of patients with COVID-19. These antibodies possessed sequence motifs in the heavy-chain complementarity-determining region 3 (HCDR3), resembling those identified in pathogenic HIT antibodies. Furthermore, IgG+ B cells having these HCDR3 signatures were markedly expanded in patients with severe COVID-19. Importantly, platelet-activating antibodies present in patients with COVID-19 were associated with a specific elevation of platelet α-granule proteins in the plasma and showed a positive correlation with markers for inflammation and tissue damage, suggesting a functionality of these antibodies in patients. The demonstration of functional and structural similarities between certain RBD-specific antibodies in patients with COVID-19 and pathogenic antibodies typical of HIT suggests a novel mechanism by which RBD-specific antibodies might contribute to thrombosis in COVID-19.

1.
Wu
Z
,
McGoogan
JM
.
Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention
.
JAMA
.
2020
;
323
(
13
):
1239
-
1242
.
2.
Gu
SX
,
Tyagi
T
,
Jain
K
, et al
.
Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation
.
Nat Rev Cardiol
.
2021
;
18
(
3
):
194
-
209
.
3.
Zhou
F
,
Yu
T
,
Du
R
, et al
.
Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
.
Lancet
.
2020
;
395
(
10229
):
1054
-
1062
.
4.
Liao
D
,
Zhou
F
,
Luo
L
, et al
.
Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study
.
Lancet Haematol
.
2020
;
7
(
9
):
e671
-
e678
.
5.
Shah
S
,
Shah
K
,
Patel
SB
, et al
.
Elevated D-dimer levels are associated with increased risk of mortality in COVID-19: a systematic review and meta-analysis
.
Cardiol Rev
.
2020
;
28
(
6
):
295
-
302
.
6.
Tang
N
,
Li
D
,
Wang
X
,
Sun
Z
.
Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia
.
J Thromb Haemost
.
2020
;
18
(
4
):
844
-
847
.
7.
Guan
WJ
,
Ni
ZY
,
Hu
Y
, et al
.
Clinical characteristics of coronavirus disease 2019 in China
.
N Engl J Med
.
2020
;
382
(
18
):
1708
-
1720
.
8.
Manne
BK
,
Denorme
F
,
Middleton
EA
, et al
.
Platelet gene expression and function in COVID-19 patients
.
Blood
.
2020
;
136
(
11
):
1317
-
1329
.
9.
Goshua
G
,
Pine
AB
,
Meizlish
ML
, et al
.
Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study
.
Lancet Haematol
.
2020
;
7
(
8
):
e575
-
e582
.
10.
Merad
M
,
Martin
JC
.
Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages
.
Nat Rev Immunol
.
2020
;
20
(
6
):
355
-
362
.
11.
Middleton
EA
,
He
XY
,
Denorme
F
, et al
.
Neutrophil extracellular traps (NETs) contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome
.
Blood
.
2020
;
136
(
10
):
1169
-
1179
.
12.
Ackermann
M
,
Verleden
SE
,
Kuehnel
M
, et al
.
Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19
.
N Engl J Med
.
2020
;
383
(
2
):
120
-
128
.
13.
Wichmann
D
,
Sperhake
JP
,
Lutgehetmann
M
, et al
.
Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study
.
Ann Intern Med
.
2020
;
173
(
4
):
268
-
277
.
14.
Arepally
GM
.
Heparin-induced thrombocytopenia
.
Blood
.
2017
;
129
(
21
):
2864
-
2872
.
15.
Suh
JS
,
Malik
MI
,
Aster
RH
,
Visentin
GP
.
Characterization of the humoral immune response in heparin-induced thrombocytopenia
.
Am J Hematol
.
1997
;
54
(
3
):
196
-
201
.
16.
Jaax
ME
,
Krauel
K
,
Marschall
T
, et al
.
Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4
.
Blood
.
2013
;
122
(
2
):
272
-
281
.
17.
Cines
DB
,
Yarovoi
SV
,
Zaitsev
SV
, et al
.
Polyphosphate/platelet factor 4 complexes can mediate heparin-independent platelet activation in heparin-induced thrombocytopenia
.
Blood Adv
.
2016
;
1
(
1
):
62
-
74
.
18.
Warkentin
TE
,
Arnold
DM
,
Nazi
I
,
Kelton
JG
.
The platelet serotonin-release assay
.
Am J Hematol
.
2015
;
90
(
6
):
564
-
572
.
19.
Samuelson Bannow
BT
,
Warad
D
,
Jones
C
, et al
.
A prospective, blinded study of a PF4-dependent assay for HIT diagnosis
.
Blood
.
2021
;
137
(
8
):
1082
-
1089
.
20.
Zhu
W
,
Zheng
Y
,
Yu
M
, et al
.
Cloned antibodies from patients with HIT provide new clues to HIT pathogenesis
.
Blood
.
2023
;
141
(
9
):
1060
-
1069
.
21.
Kelton
JG
,
Sheridan
D
,
Santos
A
, et al
.
Heparin-induced thrombocytopenia: laboratory studies
.
Blood
.
1988
;
72
(
3
):
925
-
930
.
22.
Rauova
L
,
Hirsch
JD
,
Greene
TK
, et al
.
Monocyte-bound PF4 in the pathogenesis of heparin-induced thrombocytopenia
.
Blood
.
2010
;
116
(
23
):
5021
-
5031
.
23.
Perdomo
J
,
Leung
HHL
,
Ahmadi
Z
, et al
.
Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia
.
Nat Commun
.
2019
;
10
(
1
):
1322
.
24.
Cines
DB
,
Tomaski
A
,
Tannenbaum
S
.
Immune endothelial-cell injury in heparin-associated thrombocytopenia
.
N Engl J Med
.
1987
;
316
(
10
):
581
-
589
.
25.
Warkentin
TE
,
Basciano
PA
,
Knopman
J
,
Bernstein
RA
.
Spontaneous heparin-induced thrombocytopenia syndrome: 2 new cases and a proposal for defining this disorder
.
Blood
.
2014
;
123
(
23
):
3651
-
3654
.
26.
Brouwer
PJM
,
Caniels
TG
,
van der Straten
K
, et al
.
Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability
.
Science
.
2020
;
369
(
6504
):
643
-
650
.
27.
Kim
SI
,
Noh
J
,
Kim
S
, et al
.
Stereotypic neutralizing VH antibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals
.
Sci Transl Med
.
2021
;
13
(
578
):
eabd6990
.
28.
Robbiani
DF
,
Gaebler
C
,
Muecksch
F
, et al
.
Convergent antibody responses to SARS-CoV-2 in convalescent individuals
.
Nature
.
2020
;
584
(
7821
):
437
-
442
.
29.
Kuri-Cervantes
L
,
Pampena
MB
,
Meng
W
, et al
.
Comprehensive mapping of immune perturbations associated with severe COVID-19
.
Sci Immunol
.
2020
;
5
(
49
):
eabd7114
.
30.
Padmanabhan
A
,
Jones
CG
,
Bougie
DW
, et al
.
A modified PF4-dependent, CD62p expression assay selectively detects serotonin-releasing antibodies in patients suspected of HIT
.
Thromb Haemostasis
.
2015
;
114
(
6
):
1322
-
1323
.
31.
Zhi
W.
,
Zheng
Y.
,
Yu
M.
, et al
.
Cloned antibodies from patients with HIT provide new clues to HIT pathogenesis
.
Blood
.
2023
;
141
(
9
):
1060
-
1069
.
32.
Ghraichy
M
,
Galson
JD
,
Kovaltsuk
A
, et al
.
Maturation of the human immunoglobulin heavy chain repertoire with age
.
Front Immunol
.
2020
;
11
:
1734
.
33.
Briney
B
,
Inderbitzin
A
,
Joyce
C
,
Burton
DR
.
Commonality despite exceptional diversity in the baseline human antibody repertoire
.
Nature
.
2019
;
566
(
7744
):
393
-
397
.
34.
Galson
JD
,
Schaetzle
S
,
Bashford-Rogers
RJM
, et al
.
Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent immune signatures
.
Front Immunol
.
2020
;
11
:
605170
.
35.
Gupta
NT
,
Adams
KD
,
Briggs
AW
,
Timberlake
SC
,
Vigneault
F
,
Kleinstein
SH
.
Hierarchical clustering can identify B cell clones with high confidence in Ig repertoire sequencing data
.
J Immunol
.
2017
;
198
(
6
):
2489
-
2499
.
36.
Tipton
CM
,
Fucile
CF
,
Darce
J
, et al
.
Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus
.
Nat Immunol
.
2015
;
16
(
7
):
755
-
765
.
37.
Gupta
NT
,
Vander Heiden
JA
,
Uduman
M
,
Gadala-Maria
D
,
Yaari
G
,
Kleinstein
SH
.
Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data
.
Bioinformatics
.
2015
;
31
(
20
):
3356
-
3358
.
38.
Padmanabhan
A
,
Jones
CG
,
Curtis
BR
, et al
.
A novel PF4-dependent platelet activation assay identifies patients likely to have heparin-induced thrombocytopenia/thrombosis
.
Chest
.
2016
;
150
(
3
):
506
-
515
.
39.
Zuo
Y
,
Yalavarthi
S
,
Shi
H
, et al
.
Neutrophil extracellular traps in COVID-19
.
JCI Insight
.
2020
;
5
(
11
):
e138999
.
40.
Roers
A
,
Hiller
B
,
Hornung
V
.
Recognition of endogenous nucleic acids by the innate immune system
.
Immunity
.
2016
;
44
(
4
):
739
-
754
.
41.
Lande
R
,
Ganguly
D
,
Facchinetti
V
, et al
.
Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus
.
Sci Transl Med
.
2011
;
3
(
73
):
73ra19
.
42.
Garcia-Romo
GS
,
Caielli
S
,
Vega
B
, et al
.
Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus
.
Sci Transl Med
.
2011
;
3
(
73
):
73ra20
.
43.
Panigrahi
S
,
Ma
Y
,
Hong
L
, et al
.
Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis
.
Circ Res
.
2013
;
112
(
1
):
103
-
112
.
44.
Yurasov
S
,
Wardemann
H
,
Hammersen
J
, et al
.
Defective B cell tolerance checkpoints in systemic lupus erythematosus
.
J Exp Med
.
2005
;
201
(
5
):
703
-
711
.
45.
Smith
K
,
Garman
L
,
Wrammert
J
, et al
.
Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen
.
Nat Protoc
.
2009
;
4
(
3
):
372
-
384
.
46.
Jonnalagadda
D
,
Izu
LT
,
Whiteheart
SW
.
Platelet secretion is kinetically heterogeneous in an agonist-responsive manner
.
Blood
.
2012
;
120
(
26
):
5209
-
5216
.
47.
Moisini
I
,
Davidson
A
.
BAFF: a local and systemic target in autoimmune diseases
.
Clin Exp Immunol
.
2009
;
158
(
2
):
155
-
163
.
48.
Leyva-Castillo
JM
,
Jabara
HH
,
Wenzel
J
, et al
.
APRIL expression is upregulated in atopic dermatitis skin lesions and at sites of antigen driven allergic skin inflammation in mice
.
Clin Immunol
.
2020
;
219
:
108556
.
49.
Pinna
RA
,
Dos Santos
AC
,
Perce-da-Silva
DS
, et al
.
Correlation of APRIL with production of inflammatory cytokines during acute malaria in the Brazilian Amazon
.
Immun Inflamm Dis
.
2018
;
6
(
2
):
207
-
220
.
50.
Liu
T
,
Liu
Y
,
Liu
CX
,
Jiang
YM
.
CXCL13 is elevated in inflammatory bowel disease in mice and humans and is implicated in disease pathogenesis
.
Front Immunol
.
2022
;
13
:
997862
.
51.
Jarlhelt
I
,
Nielsen
SK
,
Jahn
CXH
, et al
.
SARS-CoV-2 antibodies mediate complement and cellular driven inflammation
.
Front Immunol
.
2021
;
12
:
767981
.
52.
Yang
MY
,
Zheng
MH
,
Meng
XT
,
Ma
LW
,
Liang
HY
,
Fan
HY
.
Role of Toll-like receptors in the pathogenesis of COVID-19: current and future perspectives
.
Scand J Immunol
.
2023
;
98
(
2
):
e13275
.
53.
Khanmohammadi
S
,
Rezaei
N
.
Role of Toll-like receptors in the pathogenesis of COVID-19
.
J Med Virol
.
2021
;
93
(
5
):
2735
-
2739
.
54.
Afzali
B
,
Noris
M
,
Lambrecht
BN
,
Kemper
C
.
The state of complement in COVID-19
.
Nat Rev Immunol
.
2022
;
22
(
2
):
77
-
84
.
55.
Freeman
SA
,
Jaumouille
V
,
Choi
K
, et al
.
Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor
.
Nat Commun
.
2015
;
6
:
6168
.
56.
Savage
HP
,
Klasener
K
,
Smith
FL
,
Luo
Z
,
Reth
M
,
Baumgarth
N
.
TLR induces reorganization of the IgM-BCR complex regulating murine B-1 cell responses to infections
.
Elife
.
2019
;
8
:
e46997
.
57.
Suthers
AN
,
Sarantopoulos
S
.
TLR7/TLR9- and B cell receptor-signaling crosstalk: promotion of potentially dangerous B cells
.
Front Immunol
.
2017
;
8
:
775
.
58.
Rickert
RC
.
Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex
.
Curr Opin Immunol
.
2005
;
17
(
3
):
237
-
243
.
59.
Wang
EY
,
Mao
T
,
Klein
J
, et al
.
Diverse functional autoantibodies in patients with COVID-19
.
Nature
.
2021
;
595
(
7866
):
283
-
288
.
60.
Chang
SE
,
Feng
A
,
Meng
W
, et al
.
New-onset IgG autoantibodies in hospitalized patients with COVID-19
.
Nat Commun
.
2021
;
12
(
1
):
5417
.
61.
Bastard
P
,
Gervais
A
,
Le Voyer
T
, et al
.
Autoantibodies neutralizing type I IFNs are present in ∼4% of uninfected individuals over 70 years old and account for ∼20% of COVID-19 deaths
.
Sci Immunol
.
2021
;
6
(
62
):
eabl4340
.
62.
Bastard
P
,
Rosen
LB
,
Zhang
Q
, et al
.
Autoantibodies against type I IFNs in patients with life-threatening COVID-19
.
Science
.
2020
;
370
(
6515
):
eabd4585
.
63.
Bowles
L
,
Platton
S
,
Yartey
N
, et al
.
Lupus anticoagulant and abnormal coagulation tests in patients with COVID-19
.
N Engl J Med
.
2020
;
383
(
3
):
288
-
290
.
64.
Zhang
Y
,
Xiao
M
,
Zhang
S
, et al
.
Coagulopathy and antiphospholipid antibodies in patients with COVID-19
.
N Engl J Med
.
2020
;
382
(
17
):
e38
.
65.
Zuo
Y
,
Estes
SK
,
Ali
RA
, et al
.
Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19
.
Sci Transl Med
.
2020
;
12
(
570
):
eabd3876
.
66.
Gagiannis
D
,
Steinestel
J
,
Hackenbroch
C
, et al
.
Clinical, serological, and histopathological similarities between severe COVID-19 and acute exacerbation of connective tissue disease-associated interstitial lung disease (CTD-ILD)
.
Front Immunol
.
2020
;
11
:
587517
.
67.
Woodruff
MC
,
Ramonell
RP
,
Haddad
NS
, et al
.
Dysregulated naive B cells and de novo autoreactivity in severe COVID-19
.
Nature
.
2022
;
611
(
7934
):
139
-
147
.
68.
Woodruff
MC
,
Ramonell
RP
,
Nguyen
DC
, et al
.
Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19
.
Nat Immunol
.
2020
;
21
(
12
):
1506
-
1516
.
69.
Zhu
W
,
Zhou
L
,
Zhao
T
, et al
.
Polyreactivity and somatic hypermutation analysis reveals the innate B cell origin of human PF4/heparin reactive antibodies [abstract]
.
Blood
.
2020
;
136
(
suppl 1
):
34
-
35
.
70.
Aguilera
I
,
Melero
J
,
Nunez-Roldan
A
,
Sanchez
B
.
Molecular structure of eight human autoreactive monoclonal antibodies
.
Immunology
.
2001
;
102
(
3
):
273
-
280
.
71.
Wardemann
H
,
Yurasov
S
,
Schaefer
A
,
Young
JW
,
Meffre
E
,
Nussenzweig
MC
.
Predominant autoantibody production by early human B cell precursors
.
Science
.
2003
;
301
(
5638
):
1374
-
1377
.
72.
Ichiyoshi
Y
,
Casali
P
.
Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments
.
J Exp Med
.
1994
;
180
(
3
):
885
-
895
.
73.
Crouzier
R
,
Martin
T
,
Pasquali
JL
.
Heavy chain variable region, light chain variable region, and heavy chain CDR3 influences on the mono- and polyreactivity and on the affinity of human monoclonal rheumatoid factors
.
J Immunol
.
1995
;
154
(
9
):
4526
-
4535
.
74.
Radic
MZ
,
Weigert
M
.
Genetic and structural evidence for antigen selection of anti-DNA antibodies
.
Annu Rev Immunol
.
1994
;
12
:
487
-
520
.
75.
Barbas
SM
,
Ditzel
HJ
,
Salonen
EM
,
Yang
WP
,
Silverman
GJ
,
Burton
DR
.
Human autoantibody recognition of DNA
.
Proc Natl Acad Sci U S A
.
1995
;
92
(
7
):
2529
-
2533
.
76.
Meffre
E
,
Schaefer
A
,
Wardemann
H
,
Wilson
P
,
Davis
E
,
Nussenzweig
MC
.
Surrogate light chain expressing human peripheral B cells produce self-reactive antibodies
.
J Exp Med
.
2004
;
199
(
1
):
145
-
150
.
77.
Zheng
NY
,
Wilson
K
,
Wang
X
, et al
.
Human immunoglobulin selection associated with class switch and possible tolerogenic origins for C delta class-switched B cells
.
J Clin Invest
.
2004
;
113
(
8
):
1188
-
1201
.
78.
Conway
EM
,
Mackman
N
,
Warren
RQ
, et al
.
Understanding COVID-19-associated coagulopathy
.
Nat Rev Immunol
.
2022
;
22
(
10
):
639
-
649
.
79.
Jobe
SM
,
Wen
R
.
Another front in COVID-19's perfect storm
.
Blood
.
2021
;
137
(
8
):
1006
-
1007
.
80.
Nazy
I
,
Jevtic
SD
,
Moore
JC
, et al
.
Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia
.
J Thromb Haemost
.
2021
;
19
(
5
):
1342
-
1347
.
81.
Brodard
J
,
Kremer Hovinga
JA
,
Fontana
P
,
Studt
JD
,
Gruel
Y
,
Greinacher
A
.
COVID-19 patients often show high-titer non-platelet-activating anti-PF4/heparin IgG antibodies
.
J Thromb Haemost
.
2021
;
19
(
5
):
1294
-
1298
.
82.
May
JE
,
Siniard
RC
,
Marques
M
.
The challenges of diagnosing heparin-induced thrombocytopenia in patients with COVID-19
.
Res Pract Thromb Haemost
.
2020
;
4
(
6
):
1066
-
1067
.
83.
Patell
R
,
Khan
A
,
Bogue
T
, et al
.
Heparin induced thrombocytopenia antibodies in COVID-19
.
Am J Hematol
.
2020
;
95
(
10
):
E295
-
E296
.
84.
Daviet
F
,
Guervilly
C
,
Baldesi
O
, et al
.
Heparin-induced thrombocytopenia in severe COVID-19
.
Circulation
.
2020
;
142
(
19
):
1875
-
1877
.
85.
Liu
Q
,
Miao
H
,
Li
S
, et al
.
Anti-PF4 antibodies associated with disease severity in COVID-19
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
47
):
e2213361119
.
86.
Ueland
T
,
Hausberg
I
,
Mortberg
TV
, et al
.
Anti-PF4/polyanion antibodies in COVID-19 patients are associated with disease severity and pulmonary pathology
.
Platelets
.
2022
;
33
(
4
):
640
-
644
.
87.
Eichinger
S
,
Warkentin
TE
,
Greinacher
A
,
Weisser
K
,
Kyrle
PA
,
Eichinger
S
.
Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination
.
N Engl J Med
.
2021
;
385
(
3
):
e11
.
88.
Schultz
NH
,
Sorvoll
IH
,
Michelsen
AE
, et al
.
Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination
.
N Engl J Med
.
2021
;
384
(
22
):
2124
-
2130
.
89.
Muir
KL
,
Kallam
A
,
Koepsell
SA
,
Gundabolu
K
.
Thrombotic thrombocytopenia after Ad26.COV2.S vaccination
.
N Engl J Med
.
2021
;
384
(
20
):
1964
-
1965
.
90.
Kanack
AJ
,
Bayas
A
,
George
G
, et al
.
Monoclonal and oligoclonal anti-platelet factor 4 antibodies mediate VITT
.
Blood
.
2022
;
140
(
1
):
73
-
77
.
91.
Wang
JJ
,
Armour
B
,
Chataway
T
, et al
.
Vaccine-induced immune thrombotic thrombocytopenia is mediated by a stereotyped clonotypic antibody
.
Blood
.
2022
;
140
(
15
):
1738
-
1742
.
92.
Huynh
A
,
Kelton
JG
,
Arnold
DM
,
Daka
M
,
Nazy
I
.
Antibody epitopes in vaccine-induced immune thrombotic thrombocytopaenia
.
Nature
.
2021
;
596
(
7873
):
565
-
569
.
93.
Greinacher
A
,
Selleng
K
,
Mayerle
J
, et al
.
Anti-platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein
.
Blood
.
2021
;
138
(
14
):
1269
-
1277
.
You do not currently have access to this content.
Sign in via your Institution