• SY-5609 repressed Myc, inhibited cell growth, induced lethality, and depleted protein expressions in post-MPN sAML stem/progenitor cells.

  • SY-5609 combined with BET inhibitor reduced in vivo sAML burden and significantly improved survival in xenograft models of post-MPN sAML.

Abstract

Rising blast percentage or secondary acute myeloid leukemia (sAML) transformation in myeloproliferative neoplasms (MPNs) leads to JAK1/2 inhibitor (JAKi) therapy resistance and poor survival. Here, we demonstrate that treatment with the CDK7 inhibitor (CDK7i) SY-5609 depletes phenotypically characterized post-MPN sAML stem/progenitor cells. In cultured post-MPN sAML SET2, HEL and patient-derived (PD) post-MPN sAML cells, SY-5609 treatment inhibited growth and induced lethality while sparing normal cells. RNA-sequencing analysis after SY-5609 treatment reduced mRNA expression of MYC, MYB, CDK4/6, PIM1, and CCND1 but increased expression of CDKN1A and BCL2L1. Mass spectrometry of SY-5609–treated MPN-sAML cells also reduced c-Myc, c-Myb, PIM1, and CDK4/6 but increased p21, caspase-9, and BAD protein levels. CRISPR-mediated CDK7 depletion also reduced cell viability of HEL cells. Cytometry by time of flight (CyTOF) analysis of SY-5609–treated PD post-MPN sAML stem/progenitor cells showed reduced c-Myc, CDK6, and PU.1 but increased protein levels of CD11b, p21, and cleaved caspase-3. Cotreatment with SY-5609 and ruxolitinib was synergistically lethal in HEL, SET2, and PD post-MPN sAML cells. A CRISPR screen in sAML cells revealed BRD4, CBP, and p300 as codependencies with CDK7i. Accordingly, cotreatment with SY-5609 and the bromodomain and extra-terminal protein inhibitor (BETi) OTX015 or pelabresib or the CBP/p300 inhibitor GNE-049 was synergistically lethal in MPN-sAML cells (including those exhibiting TP53 loss). Finally, in the HEL-Luc/GFP xenograft model, compared with each agent alone, cotreatment with SY-5609 and OTX015 reduced sAML burden and improved survival without host toxicity. These findings demonstrate promising preclinical activity of CDK7i-based combinations with BETi or CBP/p300 inhibitor against advanced MPNs, including post-MPN sAML.

1.
Vannucchi
AM
,
Kantarjian
HM
,
Kiladjian
JJ
, et al
.
A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis
.
Haematologica
.
2015
;
100
(
9
):
1139
-
1145
.
2.
Bose
P
,
Verstovsek
S
.
JAK2 inhibitors for myeloproliferative neoplasms: what is next?
.
Blood
.
2017
;
130
(
2
):
115
-
125
.
3.
Li
B
,
Mascarenhas
JO
,
Rampal
RK
.
Leukemic transformation of myeloproliferative neoplasms: therapeutic and genomic considerations
.
Curr Hematol Malig Rep
.
2018
;
13
(
6
):
588
-
595
.
4.
Shahin
OA
,
Chifotides
HT
,
Bose
P
,
Masarova
L
,
Verstovsek
S
.
Accelerated phase of myeloproliferative neoplasms
.
Acta Haematol
.
2021
;
144
(
5
):
484
-
499
.
5.
Verstovsek
S
,
Fiskus
W
,
Manshouri
T
,
Bhalla
KN
.
Targeting cistrome and dysregulated transcriptome of post-MPN sAML
.
Oncotarget
.
2017
;
8
(
55
):
93301
-
93302
.
6.
Dunbar
AJ
,
Rampal
RK
,
Levine
R
.
Leukemia secondary to myeloproliferative neoplasms
.
Blood
.
2020
;
136
(
1
):
61
-
70
.
7.
Rampal
RK
,
Mascarenhas
JO
,
Kosiorek
HE
, et al
.
Safety and efficacy of combined ruxolitinib and decitabine in accelerated and blast-phase myeloproliferative neoplasms
.
Blood Adv
.
2018
;
2
(
24
):
3572
-
3580
.
8.
Zhou
S
,
Tremblay
D
,
Hoffman
R
, et al
.
Clinical benefit derived from decitabine therapy for advanced phases of myeloproliferative neoplasms
.
Acta Haematol
.
2021
;
144
(
1
):
48
-
57
.
9.
Bradner
JE
,
Hnisz
D
,
Young
RA
.
Transcriptional addiction in cancer
.
Cell
.
2017
;
168
(
4
):
629
-
643
.
10.
Berico
P
,
Coin
F
.
Is TFIIH the new Achilles heel of cancer cells?
.
Transcription
.
2018
;
9
(
1
):
47
-
51
.
11.
Mbonye
U
,
Wang
B
,
Gokulrangan
G
,
Shi
W
,
Yang
S
,
Karn
J
.
Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation
.
J Biol Chem
.
2018
;
293
(
26
):
10009
-
10025
.
12.
Greber
BJ
,
Nguyen
THD
,
Fang
J
,
Afonine
PV
,
Adams
PD
,
Nogales
E
.
The cryo-electron microscopy structure of human transcription factor IIH
.
Nature
.
2017
;
549
(
7672
):
414
-
417
.
13.
Ebmeier
CC
,
Erickson
B
,
Allen
BL
, et al
.
Human TFIIH kinase CDK7 regulates transcription-associated chromatin modifications
.
Cell Rep
.
2017
;
20
(
5
):
1173
-
1186
.
14.
Cao
K
,
Shilatifard
A
.
Inhibit globally, act locally: CDK7 inhibitors in cancer therapy
.
Cancer Cell
.
2014
;
26
(
2
):
158
-
159
.
15.
Minzel
W
,
Venkatachalam
A
,
Fink
A
, et al
.
Small molecules co-targeting CKIα and the transcriptional kinases CDK7/9 control AML in preclinical models
.
Cell
.
2018
;
175
(
1
):
171
-
185.e25
.
16.
Kwiatkowski
N
,
Zhang
T
,
Rahl
PB
, et al
.
Targeting transcription regulation in cancer with a covalent CDK7 inhibitor
.
Nature
.
2014
;
511
(
7511
):
616
-
620
.
17.
Fiskus
W
,
Manshouri
T
,
Birdwell
C
, et al
.
Efficacy of CDK9 inhibition in therapy of post-myeloproliferative neoplasm (MPN) secondary (s) AML cells
.
Blood Cancer J
.
2022
;
12
(
1
):
23
.
18.
Sava
GP
,
Fan
H
,
Coombes
RC
,
Buluwela
L
,
Ali
S
.
CDK7 inhibitors as anticancer drugs
.
Cancer Metastasis Rev
.
2020
;
39
(
3
):
805
-
823
.
19.
Tsherniak
A
,
Vazquez
F
,
Montgomery
PG
, et al
.
Defining a cancer dependency map
.
Cell
.
2017
;
170
(
3
):
564
-
576.e16
.
20.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
21.
Saenz
DT
,
Fiskus
W
,
Manshouri
T
, et al
.
BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells
.
Leukemia
.
2017
;
31
(
3
):
678
-
687
.
22.
Saenz
DT
,
Fiskus
W
,
Qian
Y
, et al
.
Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells
.
Leukemia
.
2017
;
31
(
9
):
1951
-
1961
.
23.
Raisner
R
,
Kharbanda
S
,
Jin
L
, et al
.
Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation
.
Cell Rep
.
2018
;
24
(
7
):
1722
-
1729
.
24.
Koppikar
P
,
Bhagwat
N
,
Kilpivaara
O
, et al
.
Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy
.
Nature
.
2012
;
489
(
7414
):
155
-
159
.
25.
Saenz
DT
,
Fiskus
W
,
Manshouri
T
, et al
.
Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML
.
Leukemia
.
2019
;
33
(
6
):
1373
-
1386
.
26.
Saenz
DT
,
Fiskus
W
,
Mill
CP
, et al
.
Mechanistic basis and efficacy of targeting the β-catenin-TCF7L2-JMJD6-c-Myc axis to overcome resistance to BET inhibitors
.
Blood
.
2020
;
135
(
15
):
1255
-
1269
.
27.
DeGregori
J
.
The genetics of the E2F family of transcription factors: shared functions and unique roles
.
Biochim Biophys Acta
.
2002
;
1602
(
2
):
131
-
150
.
28.
Bracken
AP
,
Ciro
M
,
Cocito
A
,
Helin
K
.
E2F target genes: unraveling the biology
.
Trends Biochem Sci
.
2004
;
29
(
8
):
409
-
417
.
29.
Fiskus
W
,
Mill
CP
,
Nabet
B
, et al
.
Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells
.
Blood Cancer J
.
2021
;
11
(
5
):
98
.
30.
Kaloni
D
,
Diepstraten
ST
,
Strasser
A
,
Kelly
GL
.
BCL-2 protein family: attractive targets for cancer therapy
.
Apoptosis
.
2023
;
28
(
1-2
):
20
-
38
.
31.
Bose
P
,
Verstovsek
S
.
JAK inhibition for the treatment of myelofibrosis: limitations and future perspectives
.
Hemasphere
.
2020
;
4
(
4
):
e424
.
32.
Shi
J
,
Wang
E
,
Milazzo
JP
,
Wang
Z
,
Kinney
JB
,
Vakoc
CR
.
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
.
Nat Biotechnol
.
2015
;
33
(
6
):
661
-
667
.
33.
Fiskus
W
,
Mill
CP
,
Birdwell
C
, et al
.
Targeting of epigenetic co-dependencies enhances anti-AML efficacy of Menin inhibitor in AML with MLL1-r or mutant NPM1
.
Blood Cancer J
.
2023
;
13
(
1
):
53
.
You do not currently have access to this content.
Sign in via your Institution