• Temporal single-cell RNA sequencing of mouse blood identifies nonintuitive signatures of IL-17 and CSF-1 dysregulation during cGVHD.

  • Analogous IL-17 and CSF-1 dysregulation signatures can be identified in patient blood monocyte subsets at and before cGVHD diagnosis.

Abstract

Chronic graft-versus-host disease (cGVHD) remains the leading cause of nonrelapse morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). Effective therapeutic agents targeting dysregulated cytokines including interleukin-17 (IL-17) and colony-stimulating factor 1 (CSF-1) have been defined in preclinical models of cGVHD, and efficacy in subsequent clinical trials has led to their recent US Food and Drug Administration approval. Despite this, these agents are effective in only a subset of patients, expensive, difficult to access outside the United States, and used in a trial-and-error fashion. The ability to readily discern druggable, dysregulated immunity in these patients is desperately needed to facilitate the selection of appropriate treatment and to potentially identify high-risk individuals for preemptive therapy. We used single-cell sequencing–based approaches in our informative preclinical cGVHD models to “reverse engineer” temporal IL-17 and CSF-1 signatures in mouse blood that could be used to interrogate patients. We defined distinct, nonintuitive IL-17 and CSF-1 signatures in mouse blood monocytes that could be identified in relevant monocyte populations within 70% of patients at diagnosis of cGVHD and in half of patients at day +100 after HCT who subsequently developed cGVHD. These signatures can now be evaluated prospectively in clinical studies to help delineate potential responder and nonresponders to relevant therapeutics targeting these pathways.

1.
Kitko
CL
,
Pidala
J
,
Schoemans
HM
, et al
.
National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: IIa. The 2020 Clinical Implementation and Early Diagnosis Working Group report
.
Transplant Cell Ther
.
2021
;
27
(
7
):
545
-
557
.
2.
Williams
KM
,
Inamoto
Y
,
Im
A
, et al
.
National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2020 Etiology and Prevention Working Group report
.
Transplant Cell Ther
.
2021
;
27
(
6
):
452
-
466
.
3.
Jagasia
MH
,
Greinix
HT
,
Arora
M
, et al
.
National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 Diagnosis and Staging Working Group report
.
Biol Blood Marrow Transplant
.
2015
;
21
(
3
):
389
-
401.e1
.
4.
MacDonald
KP
,
Hill
GR
,
Blazar
BR
.
Chronic graft-versus-host disease: biological insights from preclinical and clinical studies
.
Blood
.
2017
;
129
(
1
):
13
-
21
.
5.
Zeiser
R
,
Lee
SJ
.
Three US Food and Drug Administration-approved therapies for chronic GVHD
.
Blood
.
2022
;
139
(
11
):
1642
-
1645
.
6.
Hill
GR
,
Olver
SD
,
Kuns
RD
, et al
.
Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma
.
Blood
.
2010
;
116
(
5
):
819
-
828
.
7.
Gartlan
KH
,
Markey
KA
,
Varelias
A
, et al
.
Tc17 cells are a proinflammatory, plastic lineage of pathogenic CD8+ T cells that induce GVHD without antileukemic effects
.
Blood
.
2015
;
126
(
13
):
1609
-
1620
.
8.
Serody
JS
,
Hill
GR
.
The IL-17 differentiation pathway and its role in transplant outcome
.
Biol Blood Marrow Transplant
.
2012
;
18
(
suppl 1
):
S56
-
S61
.
9.
Forcade
E
,
Paz
K
,
Flynn
R
, et al
.
An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition
.
JCI insight
.
2017
;
2
(
12
):
e92111
.
10.
Forcade
E
,
Kim
HT
,
Cutler
C
, et al
.
Circulating T follicular helper cells with increased function during chronic graft-versus-host disease
.
Blood
.
2016
;
127
(
20
):
2489
-
2497
.
11.
Flynn
R
,
Du
J
,
Veenstra
RG
, et al
.
Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans
.
Blood
.
2014
;
123
(
25
):
3988
-
3998
.
12.
Srinivasan
M
,
Flynn
R
,
Price
A
, et al
.
Donor B-cell alloantibody deposition and germinal center formation are required for the development of murine chronic GVHD and bronchiolitis obliterans
.
Blood
.
2012
;
119
(
6
):
1570
-
1580
.
13.
McDonald-Hyman
C
,
Flynn
R
,
Panoskaltsis-Mortari
A
, et al
.
Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner
.
Blood
.
2016
;
128
(
7
):
1013
-
1017
.
14.
Leveque-El Mouttie
L
,
Koyama
M
,
Le Texier
L
, et al
.
Corruption of dendritic cell antigen presentation during acute GVHD leads to a failure of regulatory T-cell homeostasis and chronic GVHD
.
Blood
.
2016
;
128
(
6
):
794
-
804
.
15.
Koreth
J
,
Matsuoka
K
,
Kim
HT
, et al
.
Interleukin-2 and regulatory T cells in graft-versus-host disease
.
N Engl J Med
.
2011
;
365
(
22
):
2055
-
2066
.
16.
Sarantopoulos
S
,
Stevenson
KE
,
Kim
HT
, et al
.
Altered B-cell homeostasis and excess BAFF in human chronic graft-versus-host disease
.
Blood
.
2009
;
113
(
16
):
3865
-
3874
.
17.
Allen
JL
,
Fore
MS
,
Wooten
J
, et al
.
B cells from patients with chronic GVHD are activated and primed for survival via BAFF-mediated pathways
.
Blood
.
2012
;
120
(
12
):
2529
-
2536
.
18.
Miklos
DB
,
Kim
HT
,
Miller
KH
, et al
.
Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission
.
Blood
.
2005
;
105
(
7
):
2973
-
2978
.
19.
Alexander
KA
,
Flynn
R
,
Lineburg
KE
, et al
.
CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease
.
J Clin Invest
.
2014
;
124
(
10
):
4266
-
4280
.
20.
Flynn
R
,
Paz
K
,
Du
J
, et al
.
Targeted Rho-associated kinase 2 inhibition suppresses murine and human chronic GVHD through a Stat3-dependent mechanism
.
Blood
.
2016
;
127
(
17
):
2144
-
2154
.
21.
Cutler
C
,
Lee
SJ
,
Arai
S
, et al
.
Belumosudil for chronic graft-versus-host disease after 2 or more prior lines of therapy: the ROCKstar Study
.
Blood
.
2021
;
138
(
22
):
2278
-
2289
.
22.
Jagasia
M
,
Lazaryan
A
,
Bachier
CR
, et al
.
ROCK2 inhibition with belumosudil (KD025) for the treatment of chronic graft-versus-host disease
.
J Clin Oncol
.
2021
;
39
(
17
):
1888
-
1898
.
23.
Zeiser
R
,
Burchert
A
,
Lengerke
C
, et al
.
Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey
.
Leukemia
.
2015
;
29
(
10
):
2062
-
2068
.
24.
Zeiser
R
,
Polverelli
N
,
Ram
R
, et al
.
Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host disease
.
N Engl J Med
.
2021
;
385
(
3
):
228
-
238
.
25.
Dubovsky
JA
,
Flynn
R
,
Du
J
, et al
.
Ibrutinib treatment ameliorates murine chronic graft-versus-host disease
.
J Clin Invest
.
2014
;
124
(
11
):
4867
-
4876
.
26.
Miklos
D
,
Cutler
CS
,
Arora
M
, et al
.
Ibrutinib for chronic graft-versus-host disease after failure of prior therapy
.
Blood
.
2017
;
130
(
21
):
2243
-
2250
.
27.
Kitko
CL
,
Arora
M
,
DeFilipp
Z
, et al
.
Axatilimab for chronic graft-versus-host disease after failure of at least two prior systemic therapies: results of a phase I/II study
.
J Clin Oncol
.
2023
;
41
(
10
):
1864
-
1875
.
28.
DeFilipp
Z
,
Couriel
DR
,
Lazaryan
A
, et al
.
National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: III. The 2020 treatment of chronic GVHD report
.
Transplant Cell Ther
.
2021
;
27
(
9
):
729
-
737
.
29.
Pidala
J
,
Kitko
C
,
Lee
SJ
, et al
.
National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: IIb. The 2020 Preemptive Therapy Working Group report
.
Transplant Cell Ther
.
2021
;
27
(
8
):
632
-
641
.
30.
Wolff
D
,
Radojcic
V
,
Lafyatis
R
, et al
.
National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: IV. The 2020 highly morbid forms report
.
Transplant Cell Ther
.
2021
;
27
(
10
):
817
-
835
.
31.
MacDonald
KP
,
Blazar
BR
,
Hill
GR
.
Cytokine mediators of chronic graft-versus-host disease
.
J Clin Invest
.
2017
;
127
(
7
):
2452
-
2463
.
32.
Varelias
A
,
Ormerod
KL
,
Bunting
MD
, et al
.
Acute graft-versus-host disease is regulated by an IL-17-sensitive microbiome
.
Blood
.
2017
;
129
(
15
):
2172
-
2185
.
33.
Yanez
A
,
Coetzee
SG
,
Olsson
A
, et al
.
Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes
.
Immunity
.
2017
;
47
(
5
):
890
-
902.e4
.
34.
Grimshaw
MJ
,
Balkwill
FR
.
Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation--a potential mechanism
.
Eur J Immunol
.
2001
;
31
(
2
):
480
-
489
.
35.
Ying
H
,
Kang
Y
,
Zhang
H
, et al
.
MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway
.
J Immunol
.
2015
;
194
(
3
):
1239
-
1251
.
36.
Ruland
J
,
Hartjes
L
.
CARD-BCL-10-MALT1 signalling in protective and pathological immunity
.
Nat Rev Immunol
.
2019
;
19
(
2
):
118
-
134
.
37.
Unterreiner
A
,
Touil
R
,
Anastasi
D
, et al
.
Myeloid innate signaling pathway regulation by MALT1 paracaspase activity
.
J Vis Exp
.
2019
;
143
:
e58439
.
38.
Kurotaki
D
,
Sasaki
H
,
Tamura
T
.
Transcriptional control of monocyte and macrophage development
.
Int Immunol
.
2017
;
29
(
3
):
97
-
107
.
39.
Jarjour
NN
,
Schwarzkopf
EA
,
Bradstreet
TR
, et al
.
Bhlhe40 mediates tissue-specific control of macrophage proliferation in homeostasis and type 2 immunity
.
Nat Immunol
.
2019
;
20
(
6
):
687
-
700
.
40.
Xie
X
,
Shi
Q
,
Wu
P
, et al
.
Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
.
Nat Immunol
.
2020
;
21
(
9
):
1119
-
1133
.
41.
McDonald-Hyman
C
,
Muller
JT
,
Loschi
M
, et al
.
The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease
.
J Clin Invest
.
2018
;
128
(
10
):
4604
-
4621
.
42.
Khandpur
R
,
Carmona-Rivera
C
,
Vivekanandan-Giri
A
, et al
.
NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis
.
Sci Transl Med
.
2013
;
5
(
178
):
178ra40
.
43.
Lam
FW
,
Da
Q
,
Guillory
B
,
Cruz
MA
.
Recombinant human vimentin binds to P-selectin and blocks neutrophil capture and rolling on platelets and endothelium
.
J Immunol
.
2018
;
200
(
5
):
1718
-
1726
.
44.
Zhou
Y
,
Lei
J
,
Xie
Q
, et al
.
Fibrinogen-like protein 2 controls sepsis catabasis by interacting with resolvin Dp5
.
Sci Adv
.
2019
;
5
(
11
):
eaax0629
.
45.
MacDonald
KP
,
Rowe
V
,
Bofinger
HM
, et al
.
The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion
.
J Immunol
.
2005
;
175
(
3
):
1399
-
1405
.
46.
Cook
ME
,
Jarjour
NN
,
Lin
CC
,
Edelson
BT
.
Transcription factor Bhlhe40 in immunity and autoimmunity
.
Trends Immunol
.
2020
;
41
(
11
):
1023
-
1036
.
47.
Dispirito MGB
J R
,
Biswas
S
.
Allosteric inhibition of MALT1 is efficacious in a model of chronic graft-versus-host disease and modulates immunometabolic activation [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
3810
.
48.
Braza
MS
,
Conde
P
,
Garcia
M
, et al
.
Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance
.
Am J Transplant
.
2018
;
18
(
5
):
1247
-
1255
.
49.
Tang
J
,
Frey
JM
,
Wilson
CL
, et al
.
Neutrophil and macrophage cell surface colony-stimulating factor 1 shed by ADAM17 drives mouse macrophage proliferation in acute and chronic inflammation
.
Mol Cell Biol
.
2018
;
38
(
17
):
e00103-18
.
You do not currently have access to this content.
Sign in via your Institution