• Lasalocid A, an antibacterial agent, is identified as a candidate against lymphoma with MYD88 L265P through high-throughput screening.

  • Lasalocid A selectively induces ubiquitin-dependent proteasomal degradation of MYD88 in lymphomas with the MYD88 L265P mutation.

Abstract

Myeloid differentiation primary response protein 88 (MYD88) is a key adaptor molecule in the signaling pathways of toll-like receptor and interleukin-1 receptor. A somatic mutation resulting in a leucine-to-proline change at position 265 of the MYD88 protein (MYD88 L265P) is one of the most prevalent oncogenic mutations found in patients with hematological malignancies. In this study, we used high-throughput screening to identify lasalocid A as a potent small molecule that selectively inhibited the viability of lymphoma cells expressing MYD88 L265P and the associated activation of NF-κB. Further investigations using CRISPR-CRISPR–associated protein 9 genetic screening, proteomics, and biochemical assays revealed that lasalocid A directly binds to the MYD88 L265P protein, enhancing its interaction with the ubiquitin ligase RNF5. This interaction promotes MYD88 degradation through the ubiquitin-dependent proteasomal pathway, specifically in lymphomas with the MYD88 L265P mutation. Lasalocid A exhibited strong antitumor efficacy in xenograft mouse models, induced disease remission in ibrutinib-resistant lymphomas, and showed synergistic activity with the B-cell lymphoma 2 inhibitor venetoclax. This study highlights the potential of inducing MYD88 L265P degradation using small molecules, offering promising strategies for treating lymphomas that harbor the MYD88 L265P mutation.

1.
Rock
FL
,
Hardiman
G
,
Timans
JC
,
Kastelein
RA
,
Bazan
JF
.
A family of human receptors structurally related to Drosophila Toll
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
2
):
588
-
593
.
2.
Zhang
FX
,
Kirschning
CJ
,
Mancinelli
R
, et al
.
Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes
.
J Biol Chem
.
1999
;
274
(
12
):
7611
-
7614
.
3.
Ngo
VN
,
Young
RM
,
Schmitz
R
, et al
.
Oncogenically active MYD88 mutations in human lymphoma
.
Nature
.
2011
;
470
(
7332
):
115
-
119
.
4.
Treon
SP
,
Xu
L
,
Yang
G
, et al
.
MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia
.
N Engl J Med
.
2012
;
367
(
9
):
826
-
833
.
5.
Landgren
O
,
Staudt
L
.
MYD88 L265P somatic mutation in IgM MGUS
.
N Engl J Med
.
2012
;
367
(
23
):
2255
-
2257
.
6.
Yu
X
,
Li
W
,
Deng
Q
, et al
.
MYD88 L265P mutation in lymphoid malignancies
.
Cancer Res
.
2018
;
78
(
10
):
2457
-
2462
.
7.
Chen
L
,
Zheng
L
,
Chen
P
,
Liang
G
.
Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling
.
J Med Chem
.
2020
;
63
(
22
):
13316
-
13329
.
8.
Chen
P
,
Zhou
Y
,
Li
X
, et al
.
Design, synthesis, and bioevaluation of novel MyD88 inhibitor c17 against acute lung injury derived from the virtual screen
.
J Med Chem
.
2023
;
66
(
10
):
6938
-
6958
.
9.
Olson
MA
,
Lee
MS
,
Kissner
TL
,
Alam
S
,
Waugh
DS
,
Saikh
KU
.
Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen
.
Sci Rep
.
2015
;
5
:
14246
.
10.
Burns
K
,
Janssens
S
,
Brissoni
B
,
Olivos
N
,
Beyaert
R
,
Tschopp
J
.
Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4
.
J Exp Med
.
2003
;
197
(
2
):
263
-
268
.
11.
Tang
B
,
Xiao
B
,
Liu
Z
, et al
.
Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation
.
FEBS Lett
.
2010
;
584
(
8
):
1481
-
1486
.
12.
Bandyopadhyay
S
,
Long
ME
,
Allen
LA
.
Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response
.
PLoS One
.
2014
;
9
(
10
):
e109525
.
13.
Choi
JW
,
Kim
Y
,
Lee
JH
,
Kim
YS
.
MYD88 expression and L265P mutation in diffuse large B-cell lymphoma
.
Hum Pathol
.
2013
;
44
(
7
):
1375
-
1381
.
14.
Zhan
C
,
Qi
R
,
Wei
G
,
Guven-Maiorov
E
,
Nussinov
R
,
Ma
B
.
Conformational dynamics of cancer-associated MyD88-TIR domain mutant L252P (L265P) allosterically tilts the landscape toward homo-dimerization
.
Protein Eng Des Sel
.
2016
;
29
(
9
):
347
-
354
.
15.
Boudesco
C
,
Verhoeyen
E
,
Martin
L
, et al
.
HSP110 sustains chronic NF-κB signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization
.
Blood
.
2018
;
132
(
5
):
510
-
520
.
16.
Gibouin
VC
,
Durand
M
,
Boudesco
C
, et al
.
First-in-class inhibitor of HSP110 blocks BCR activation through SYK phosphorylation in diffuse large B-cell lymphoma
.
Leukemia
.
2024
;
38
(
8
):
1742
-
1750
.
17.
Stanton
BZ
,
Chory
EJ
,
Crabtree
GR
.
Chemically induced proximity in biology and medicine
.
Science
.
2018
;
359
(
6380
):
eaao5902
.
18.
Yang
G
,
Zhou
Y
,
Liu
X
, et al
.
A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia
.
Blood
.
2013
;
122
(
7
):
1222
-
1232
.
19.
Pan
Z
,
Scheerens
H
,
Li
SJ
, et al
.
Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase
.
ChemMedChem
.
2007
;
2
(
1
):
58
-
61
.
20.
Treon
SP
,
Tripsas
CK
,
Meid
K
, et al
.
Ibrutinib in previously treated Waldenstrom's macroglobulinemia
.
N Engl J Med
.
2015
;
372
(
15
):
1430
-
1440
.
21.
Buske
C
,
Jurczak
W
,
Salem
JE
,
Dimopoulos
MA
.
Managing Waldenström's macroglobulinemia with BTK inhibitors
.
Leukemia
.
2023
;
37
(
1
):
35
-
46
.
22.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
23.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
24.
Knittel
G
,
Liedgens
P
,
Korovkina
D
, et al
.
B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice
.
Blood
.
2016
;
127
(
22
):
2732
-
2741
.
25.
Flümann
R
,
Rehkämper
T
,
Nieper
P
, et al
.
An autochthonous mouse model of Myd88- and BCL2-driven diffuse large B-cell lymphoma reveals actionable molecular vulnerabilities
.
Blood Cancer Discov
.
2021
;
2
(
1
):
70
-
91
.
26.
Flümann
R
,
Hansen
J
,
Pelzer
BW
, et al
.
Distinct genetically determined origins of Myd88/BCL2-driven aggressive lymphoma rationalize targeted therapeutic intervention strategies
.
Blood Cancer Discov
.
2023
;
4
(
1
):
78
-
97
.
27.
Kuo
HP
,
Ezell
SA
,
Schweighofer
KJ
, et al
.
Combination of ibrutinib and ABT-199 in diffuse large B-cell lymphoma and follicular lymphoma
.
Mol Cancer Ther
.
2017
;
16
(
7
):
1246
-
1256
.
28.
Yang
G
,
Wang
J
,
Tan
L
, et al
.
The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance
.
Blood
.
2021
;
138
(
20
):
1966
-
1979
.
29.
Shiratori
E
,
Itoh
M
,
Tohda
S
.
MYD88 inhibitor ST2825 suppresses the growth of lymphoma and leukaemia cells
.
Anticancer Res
.
2017
;
37
(
11
):
6203
-
6209
.
30.
Casan
JML
,
Seymour
JF
.
Degraders upgraded: the rise of PROTACs in hematological malignancies
.
Blood
.
2024
;
143
(
13
):
1218
-
1230
.
31.
Tsai
JM
,
Nowak
RP
,
Ebert
BL
,
Fischer
ES
.
Targeted protein degradation: from mechanisms to clinic
.
Nat Rev Mol Cell Biol
.
2024
;
25
(
9
):
740
-
757
.
32.
Ting
PY
,
Borikar
S
,
Kerrigan
JR
, et al
.
A molecular glue degrader of the WIZ transcription factor for fetal hemoglobin induction
.
Science
.
2024
;
385
(
6704
):
91
-
99
.
33.
Montoya
S
,
Bourcier
J
,
Noviski
M
, et al
.
Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127
.
Science
.
2024
;
383
(
6682
):
eadi5798
.
34.
Zhang
D
,
Harris
HM
,
Chen
J
, et al
.
NRX-0492 degrades wild-type and C481 mutant BTK and demonstrates in vivo activity in CLL patient-derived xenografts
.
Blood
.
2023
;
141
(
13
):
1584
-
1596
.
35.
Zhang
J
,
Fu
L
,
Shen
B
, et al
.
Assessing IRAK4 functions in ABC DLBCL by IRAK4 kinase inhibition and protein degradation
.
Cell Chem Biol
.
2020
;
27
(
12
):
1500
-
1509.e13
.
36.
Krönke
J
,
Udeshi
ND
,
Narla
A
, et al
.
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
.
Science
.
2014
;
343
(
6168
):
301
-
305
.
37.
Ito
T
,
Ando
H
,
Suzuki
T
, et al
.
Identification of a primary target of thalidomide teratogenicity
.
Science
.
2010
;
327
(
5971
):
1345
-
1350
.
38.
Bartlett
JB
,
Dredge
K
,
Dalgleish
AG
.
The evolution of thalidomide and its IMiD derivatives as anticancer agents
.
Nat Rev Cancer
.
2004
;
4
(
4
):
314
-
322
.
39.
Khateb
A
,
Deshpande
A
,
Feng
Y
, et al
.
The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors
.
Nat Commun
.
2021
;
12
(
1
):
5397
.
40.
Principi
E
,
Sondo
E
,
Bianchi
G
, et al
.
Targeting of ubiquitin E3 ligase RNF5 as a novel therapeutic strategy in neuroectodermal tumors
.
Cancers
.
2022
;
14
(
7
):
1802
.
41.
Jeon
YJ
,
Khelifa
S
,
Ratnikov
B
, et al
.
Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies
.
Cancer Cell
.
2015
;
27
(
3
):
354
-
369
.
42.
Alabi
S
,
Jaime-Figueroa
S
,
Yao
Z
, et al
.
Mutant-selective degradation by BRAF-targeting PROTACs
.
Nat Commun
.
2021
;
12
(
1
):
920
.
43.
Posternak
G
,
Tang
X
,
Maisonneuve
P
, et al
.
Functional characterization of a PROTAC directed against BRAF mutant V600E
.
Nat Chem Biol
.
2020
;
16
(
11
):
1170
-
1178
.
44.
Wilson
WH
,
Wright
GW
,
Huang
DW
, et al
.
Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL
.
Cancer Cell
.
2021
;
39
(
12
):
1643
-
1653.e3
.
45.
Phelan
JD
,
Scheich
S
,
Choi
J
, et al
.
Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy
.
Cancer Cell
.
2024
;
42
(
2
):
238
-
252.e9
.
46.
Chen
JG
,
Liu
X
,
Munshi
M
, et al
.
BTKCys481Ser drives ibrutinib resistance via ERK1/2 and protects BTKwild-type MYD88-mutated cells by a paracrine mechanism
.
Blood
.
2018
;
131
(
18
):
2047
-
2059
.
You do not currently have access to this content.
Sign in via your Institution