• NSD2 overexpression in MM diverts S-adenosylmethionine to the epigenome and disrupts creatine synthesis, rendering MM cells dependent on AK2.

  • Targeting AK2 in MM cells disrupts mitochondrial energy distribution, induces DNA replication stress, and enhances sensitivity to bortezomib.

Abstract

Chromosomal translocation (4;14), an adverse prognostic factor in multiple myeloma (MM), drives overexpression of the histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2). A genome-wide CRISPR screen in MM cells identified adenylate kinase 2 (AK2), an enzyme critical for high-energy phosphate transfer from the mitochondria, as an NSD2-driven vulnerability. AK2 suppression in t(4;14) MM cells decreased nicotinamide adenine dinucleotide phosphate (NADP[H]) critical for conversion of ribonucleotides to deoxyribonucleosides, leading to replication stress, DNA damage, and apoptosis. Driving a large genome-wide increase in chromatin methylation, NSD2 overexpression depletes S-adenosylmethionine, compromising the synthesis of creatine from its precursor, guanidinoacetate. Creatine supplementation restored NADP(H) levels, reduced DNA damage, and rescued AK2-deficient t(4;14) MM cells. As the creatine phosphate shuttle constitutes an alternative means for mitochondrial high-energy phosphate transport, these results indicate that NSD2-driven creatine depletion underlies the hypersensitivity of t(4;14) MM cells to AK2 loss. Furthermore, AK2 depletion in t(4;14) cells impaired protein folding in the endoplasmic reticulum, consistent with impaired use of mitochondrial adenosine triphosphate (ATP). Accordingly, AK2 suppression increased the sensitivity of MM cells to proteasome inhibition. These findings delineate a novel mechanism in which aberrant transfer of carbon to the epigenome creates a metabolic vulnerability, with direct therapeutic implications for t(4;14) MM.

1.
Kazandjian
D
.
Multiple myeloma epidemiology and survival, a unique malignancy
.
Semin Oncol
.
2016
;
43
(
6
):
676
-
681
.
2.
Barwick
BG
,
Gupta
VA
,
Vertino
PM
,
Boise
LH
.
Cell of origin and genetic alterations in the pathogenesis of multiple myeloma
.
Front Immunol
.
2019
;
10
:
1121
.
3.
Attal
M
,
Lauwers-Cances
V
,
Hulin
C
, et al
.
Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma
.
N Engl J Med
.
2017
;
376
(
14
):
1311
-
1320
.
4.
Santra
M
,
Zhan
F
,
Tian
E
,
Barlogie
B
,
Shaughnessy
J
.
A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript
.
Blood
.
2003
;
101
(
6
):
2374
-
2376
.
5.
Martinez-Garcia
E
,
Popovic
R
,
Min
D-J
, et al
.
The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells
.
Blood
.
2011
;
117
(
1
):
211
-
220
.
6.
Lauring
J
,
Abukhdeir
AM
,
Konishi
H
, et al
.
The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity
.
Blood
.
2008
;
111
(
2
):
856
-
864
.
7.
Popovic
R
,
Martinez-Garcia
E
,
Giannopoulou
EG
, et al
.
Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation
.
PLoS Genet
.
2014
;
10
(
9
):
e1004566
.
8.
Ezponda
T
,
Popovic
R
,
Shah
MY
, et al
.
The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer
.
Oncogene
.
2013
;
32
(
23
):
2882
-
2890
.
9.
El Arfani
C
,
De Veirman
K
,
Maes
K
,
De Bruyne
E
,
Menu
E
.
Metabolic features of multiple myeloma
.
Int J Mol Sci
.
2018
;
19
(
4
):
1200
.
10.
Maiso
P
,
Huynh
D
,
Moschetta
M
, et al
.
Metabolic signature identifies novel targets for drug resistance in multiple myeloma
.
Cancer Res
.
2015
;
75
(
10
):
2071
-
2082
.
11.
Besse
L
,
Besse
A
,
Mendez-Lopez
M
, et al
.
A metabolic switch in proteasome inhibitor-resistant multiple myeloma ensures higher mitochondrial metabolism, protein folding and sphingomyelin synthesis
.
Haematologica
.
2019
;
104
(
9
):
e415
-
e419
.
12.
Bloedjes
TA
,
de Wilde
G
,
Guikema
JEJ
.
Metabolic effects of recurrent genetic aberrations in multiple myeloma
.
Cancers (Basel)
.
2021
;
13
(
3
):
396
.
13.
Wang
J
,
Duan
Z
,
Nugent
Z
, et al
.
Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes
.
Cancer Lett
.
2016
;
378
(
2
):
69
-
79
.
14.
Sanson
KR
,
Hanna
RE
,
Hegde
M
, et al
.
Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities
.
Nat Commun
.
2018
;
9
(
1
):
5416
.
15.
Li
W
,
Xu
H
,
Xiao
T
, et al
.
MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
.
Genome Biol
.
2014
;
15
(
12
):
554
.
16.
Hulsen
T
. DeepVenn -- a web application for the creation of area-proportional Venn diagrams using the deep learning framework Tensorflow.js.
2022
.
17.
Diamond
TL
,
Roshal
M
,
Jamburuthugoda
VK
, et al
.
Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase
.
J Biol Chem
.
2004
;
279
(
49
):
51545
-
51553
.
18.
de Matos Simoes
R
,
Shirasaki
R
,
Downey-Kopyscinski
SL
, et al
.
Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias
.
Nat Cancer
.
2023
;
4
(
5
):
754
-
773
.
19.
Kanekura
K
,
Ishigaki
S
,
Merksamer
PI
,
Papa
FR
,
Urano
F
.
Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells
.
Lab Invest
.
2013
;
93
(
11
):
1254
-
1258
.
20.
Saxena
S
,
Zou
L
.
Hallmarks of DNA replication stress
.
Mol Cell
.
2022
;
82
(
12
):
2298
-
2314
.
21.
Matt
S
,
Hofmann
TG
.
The DNA damage-induced cell death response: a roadmap to kill cancer cells
.
Cell Mol Life Sci
.
2016
;
73
(
15
):
2829
-
2850
.
22.
Sengupta
R
,
Holmgren
A
.
Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase
.
World J Biol Chem
.
2014
;
5
(
1
):
68
-
74
.
23.
Oka
S
,
Titus
AS
,
Zablocki
D
,
Sadoshima
J
.
Molecular properties and regulation of NAD+ kinase (NADK)
.
Redox Biol
.
2023
;
59
:
102561
.
24.
Leonardi
R
,
Jackowski
S
.
Biosynthesis of pantothenic acid and coenzyme A
.
EcoSal Plus
.
2007
;
2
(
2
).
25.
Boise
LH
,
Kaufman
JL
,
Bahlis
NJ
,
Lonial
S
,
Lee
KP
.
The Tao of myeloma
.
Blood
.
2014
;
124
(
12
):
1873
-
1879
.
26.
Shah
MY
,
Martinez-Garcia
E
,
Phillip
JM
, et al
.
MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents
.
Oncogene
.
2016
;
35
(
45
):
5905
-
5915
.
27.
Avet-Loiseau
H
,
Leleu
X
,
Roussel
M
, et al
.
Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p)
.
J Clin Oncol
.
2010
;
28
(
30
):
4630
-
4634
.
28.
Pannicke
U
,
Hönig
M
,
Hess
I
, et al
.
Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2
.
Nat Genet
.
2009
;
41
(
1
):
101
-
105
.
29.
Chou
J
,
Alazami
AM
,
Jaber
F
, et al
.
Hypomorphic variants in AK2 reveal the contribution of mitochondrial function to B-cell activation
.
J Allergy Clin Immunol
.
2020
;
146
(
1
):
192
-
202
.
30.
Maslah
N
,
Latiri
M
,
Asnafi
V
, et al
.
Adenylate kinase 2 expression and addiction in T-ALL
.
Blood Adv
.
2021
;
5
(
3
):
700
-
710
.
31.
Dzeja
P
,
Terzic
A
.
Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing
.
Int J Mol Sci
.
2009
;
10
(
4
):
1729
-
1772
.
32.
Burkart
A
,
Shi
X
,
Chouinard
M
,
Corvera
S
.
Adenylate kinase 2 links mitochondrial energy metabolism to the induction of the unfolded protein response
.
J Biol Chem
.
2011
;
286
(
6
):
4081
-
4089
.
33.
Pai
C-C
,
Kearsey
SE
.
A critical balance: dNTPs and the maintenance of genome stability
.
Genes (Basel)
.
2017
;
8
(
2
):
57
.
34.
Frangini
M
,
Franzolin
E
,
Chemello
F
, et al
.
Synthesis of mitochondrial DNA precursors during myogenesis, an analysis in purified C2C12 myotubes
.
J Biol Chem
.
2013
;
288
(
8
):
5624
-
5635
.
35.
Ju
H-Q
,
Lin
J-F
,
Tian
T
,
Xie
D
,
Xu
R-H
.
NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications
.
Signal Transduct Target Ther
.
2020
;
5
(
1
):
231
.
36.
Arnér
ESJ
,
Holmgren
A
.
Physiological functions of thioredoxin and thioredoxin reductase
.
Eur J Biochem
.
2000
;
267
(
20
):
6102
-
6109
.
37.
Schlattner
U
,
Tokarska-Schlattner
M
,
Wallimann
T
.
Mitochondrial creatine kinase in human health and disease
.
Biochim Biophys Acta
.
2006
;
1762
(
2
):
164
-
180
.
38.
Dzeja
PP
,
Terzic
A
,
Wieringa
B
.
Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice
.
Mol Cell Biochem
.
2004
;
256-257
(
1-2
):
13
-
27
.
You do not currently have access to this content.
Sign in via your Institution