Abstract

DNA-damaging agents have represented the first effective treatment for the blood cancer multiple myeloma, and after 65 years since their introduction to the clinic, they remain one of the mainstay therapies for this disease. Myeloma is a cancer of plasma cells. Despite exceedingly slow proliferation, myeloma cells present extended genomic rearrangements and intense genomic instability, starting at the premalignant stage of the disease. Where does such DNA damage stem from? A reliable model argues that the powerful oncogenes activated in myeloma as well the phenotypic peculiarities of cancer plasma cells, including the dependency on the proteasome for survival and the constant presence of oxidative stress, all converge on modulating DNA damage and repair. Beleaguered by these contraposing forces, myeloma cells survive in a precarious balance, in which the robust engagement of DNA repair mechanisms to guarantee cell survival is continuously challenged by rampant genomic instability, essential for cancer cells to withstand hostile selective pressures. Shattering this delicate equilibrium has been the goal of the extensive use of DNA-damaging agents since their introduction in the clinic, now enriched by novel approaches that leverage upon synthetic lethality paradigms. Exploiting the impairment of homologous recombination caused by myeloma genetic lesions or treatments, it is now possible to design therapeutic combinations that could target myeloma cells more effectively. Furthermore, DNA-damaging agents, as demonstrated in solid tumors, may sensitize cells to immune therapies. In all, targeting DNA damage and repair remains as central as ever in myeloma, even for the foreseeable future.

1.
Neuse
CJ
,
Lomas
OC
,
Schliemann
C
, et al
.
Genome instability in multiple myeloma
.
Leukemia
.
2020
;
34
(
11
):
2887
-
2897
.
2.
Alexandrov
LB
,
Nik-Zainal
S
,
Wedge
DC
, et al
.
Signatures of mutational processes in human cancer
.
Nature
.
2013
;
500
(
7463
):
415
-
421
.
3.
Kumar
SK
,
Rajkumar
V
,
Kyle
RA
, et al
.
Multiple myeloma
.
Nat Rev Dis Primers
.
2017
;
3
(
1
):
17046
. 20.
4.
Kyle
RA
,
Rajkumar
SV
.
Multiple myeloma
.
Blood
.
2008
;
111
(
6
):
2962
-
2972
.
5.
Palumbo
A
,
Anderson
K
.
Multiple myeloma
.
N Engl J Med
.
2011
;
364
(
11
):
1046
-
1060
.
6.
Chapman
MA
,
Lawrence
MS
,
Keats
JJ
, et al
.
Initial genome sequencing and analysis of multiple myeloma
.
Nature
.
2011
;
471
(
7339
):
467
-
472
.
7.
Lohr
JG
,
Stojanov
P
,
Carter
SL
, et al
.
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy
.
Cancer Cell
.
2014
;
25
(
1
):
91
-
101
.
8.
Bolli
N
,
Maura
F
,
Minvielle
S
, et al
.
Genomic patterns of progression in smoldering multiple myeloma
.
Nat Commun
.
2018
;
9
(
1
):
3363
.
9.
Walker
BA
,
Boyle
EM
,
Wardell
CP
, et al
.
Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma
.
J Clin Oncol
.
2015
;
33
(
33
):
3911
-
3920
.
10.
Manier
S
,
Salem
KZ
,
Park
J
,
Landau
DA
,
Getz
G
,
Ghobrial
IM
.
Genomic complexity of multiple myeloma and its clinical implications
.
Nat Rev Clin Oncol
.
2017
;
14
(
2
):
100
-
113
.
11.
Carrasco
DR
,
Tonon
G
,
Huang
Y
, et al
.
High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients
.
Cancer Cell
.
2006
;
9
(
4
):
313
-
325
.
12.
Walters
D
,
Wu
X
,
Tschumper
R
, et al
.
Evidence for ongoing DNA damage in multiple myeloma cells as revealed by constitutive phosphorylation of H2AX
.
Leukemia
.
2011
;
25
(
8
):
1344
-
1353
.
13.
Cottini
F
,
Hideshima
T
,
Xu
C
, et al
.
Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers
.
Nat Med
.
2014
;
20
(
6
):
599
-
606
.
14.
Bergsagel
PL
,
Kuehl
WM
.
Chromosome translocations in multiple myeloma
.
Oncogene
.
2001
;
20
(
40
):
5611
-
5622
.
15.
Shou
Y
,
Martelli
M
,
Gabrea
A
, et al
.
Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma
.
Proc Natl Acad Sci U S A
.
2000
;
97
(
1
):
228
-
233
.
16.
Maura
F
,
Boyle
EM
,
Rustad
EH
, et al
.
Chromothripsis as a pathogenic driver of multiple myeloma
.
Semin Cell Dev Biol
.
2022
;
123
:
115
-
123
.
17.
Lawrence
MS
,
Stojanov
P
,
Mermel
CH
, et al
.
Discovery and saturation analysis of cancer genes across 21 tumour types
.
Nature
.
2014
;
505
(
7484
):
495
-
501
.
18.
Bergsagel
DE
.
Plasma cell myeloma. An interpretive review
.
Cancer
.
1972
;
30
(
6
):
1588
-
1594
.
19.
Killmann
SA
,
Cronkite
EP
,
Fliedner
TM
,
Bond
VP
.
Cell proliferation in multiple myeloma studied with tritiated thymidine in vivo
.
Lab Invest
.
1962
;
11
:
845
-
853
.
20.
Salmon
SE
,
Smith
BA
.
Immunoglobulin synthesis and total body tumor cell number in IgG multiple myeloma
.
J Clin Invest
.
1970
;
49
(
6
):
1114
-
1121
.
21.
Blackford
AN
,
Jackson
SP
.
ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response
.
Mol Cell
.
2017
;
66
(
6
):
801
-
817
.
22.
Helleday
T
,
Petermann
E
,
Lundin
C
,
Hodgson
B
,
Sharma
RA
.
DNA repair pathways as targets for cancer therapy
.
Nat Rev Cancer
.
2008
;
8
(
3
):
193
-
204
.
23.
Jackson
SP
,
Bartek
J
.
The DNA-damage response in human biology and disease
.
Nature
.
2009
;
461
(
7267
):
1071
-
1078
.
24.
Groelly
FJ
,
Fawkes
M
,
Dagg
RA
,
Blackford
AN
,
Tarsounas
M
.
Targeting DNA damage response pathways in cancer
.
Nat Rev Cancer
.
2023
;
23
(
2
):
78
-
94
.
25.
Van Sluis
M
,
McStay
B
.
A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage
.
Genes Dev
.
2015
;
29
(
11
):
1151
-
1163
.
26.
Yilmaz
D
,
Furst
A
,
Meaburn
K
, et al
.
Activation of homologous recombination in G1 preserves centromeric integrity
.
Nature
.
2021
;
600
(
7890
):
748
-
753
.
27.
Sansam
CL
,
Pezza
RJ
.
Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination
.
FEBS J
.
2015
;
282
(
13
):
2444
-
2457
.
28.
Gourzones-Dmitriev
C
,
Kassambara
A
,
Sahota
S
, et al
.
DNA repair pathways in human multiple myeloma: role in oncogenesis and potential targets for treatment
.
Cell Cycle
.
2013
;
12
(
17
):
2760
-
2773
.
29.
Petrilla
C
,
Galloway
J
,
Kudalkar
R
,
Ismael
A
,
Cottini
F
.
Understanding DNA damage response and DNA repair in multiple myeloma
.
Cancers (Basel)
.
2023
;
15
(
16
):
4155
.
30.
Williams
AB
,
Schumacher
B
.
p53 in the DNA-damage-repair process
.
Cold Spring Harb Perspect Med
.
2016
;
6
(
5
):
a026070
.
31.
Shammas
MA
,
Shmookler Reis
RJ
,
Koley
H
,
Batchu
RB
,
Li
C
,
Munshi
NC
.
Dysfunctional homologous recombination mediates genomic instability and progression in myeloma
.
Blood
.
2009
;
113
(
10
):
2290
-
2297
.
32.
Taiana
E
,
Favasuli
V
,
Ronchetti
D
, et al
.
Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma
.
Leukemia
.
2020
;
34
(
1
):
234
-
244
.
33.
Taiana
E
,
Gallo Cantafio
ME
,
Favasuli
VK
, et al
.
Genomic instability in multiple myeloma: a “non-coding RNA” perspective
.
Cancers (Basel)
.
2021
;
13
(
9
):
2127
.
34.
Caracciolo
D
,
Di Martino
MT
,
Amodio
N
, et al
.
miR-22 suppresses DNA ligase III addiction in multiple myeloma
.
Leukemia
.
2019
;
33
(
2
):
487
-
498
.
35.
Viziteu
E
,
Klein
B
,
Basbous
J
, et al
.
RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma
.
Leukemia
.
2017
;
31
(
10
):
2104
-
2113
.
36.
Cea
M
,
Cagnetta
A
,
Adamia
S
, et al
.
Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells
.
Blood
.
2016
;
127
(
9
):
1138
-
1150
.
37.
Bergsagel
PL
,
Kuehl
WM
,
Zhan
F
,
Sawyer
J
,
Barlogie
B
,
Shaughnessy
J
.
Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma
.
Blood
.
2005
;
106
(
1
):
296
-
303
.
38.
Sacco
A
,
Federico
C
,
Todoerti
K
, et al
.
Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity
.
Blood
.
2021
;
138
(
18
):
1705
-
1720
.
39.
Chng
W-J
,
Huang
GF
,
Chung
TH
, et al
.
Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma
.
Leukemia
.
2011
;
25
(
6
):
1026
-
1035
.
40.
Holien
T
,
Våtsveen
TK
,
Hella
H
,
Waage
A
,
Sundan
A
.
Addiction to c-MYC in multiple myeloma
.
Blood
.
2012
;
120
(
12
):
2450
-
2453
.
41.
Kuehl
WM
,
Bergsagel
PL
.
MYC addiction: a potential therapeutic target in MM
.
Blood
.
2012
;
120
(
12
):
2351
-
2352
.
42.
Misund
K
,
Keane
N
,
Stein
CK
, et al
.
MYC dysregulation in the progression of multiple myeloma
.
Leukemia
.
2020
;
34
(
1
):
322
-
326
.
43.
Walker
BA
,
Wardell
CP
,
Brioli
A
, et al
.
Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients
.
Blood Cancer J
.
2014
;
4
(
3
):
e191
.
44.
Affer
M
,
Chesi
M
,
Chen
WD
, et al
.
Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma
.
Leukemia
.
2014
;
28
(
8
):
1725
-
1735
.
45.
Dobbelstein
M
,
Sørensen
CS
.
Exploiting replicative stress to treat cancer
.
Nat Rev Drug Discov
.
2015
;
14
(
6
):
405
-
423
.
46.
da Costa
AABA
,
Chowdhury
D
,
Shapiro
GI
,
D’Andrea
AD
,
Konstantinopoulos
PA
.
Targeting replication stress in cancer therapy
.
Nat Rev Drug Discov
.
2023
;
22
(
1
):
38
-
58
.
47.
Kotsantis
P
,
Petermann
E
,
Boulton
SJ
.
Mechanisms of oncogene-induced replication stress: jigsaw falling into place
.
Cancer Discov
.
2018
;
8
(
5
):
537
-
555
.
48.
Botrugno
OA
,
Bianchessi
S
,
Zambroni
D
, et al
.
ATR addiction in multiple myeloma: synthetic lethal approaches exploiting established therapies
.
Haematologica
.
2019
;
105
(
10
):
2440
-
2447
.
49.
Botrugno
OA
,
Tonon
G
.
Genomic instability and replicative stress in multiple myeloma: the final curtain?
.
Cancers (Basel)
.
2021
;
14
(
1
):
25
.
50.
Cottini
F
,
Hideshima
T
,
Suzuki
R
, et al
.
Synthetic lethal approaches exploiting DNA damage in aggressive myeloma
.
Cancer Discov
.
2015
;
5
(
9
):
972
-
987
.
51.
Macheret
M
,
Halazonetis
TD
.
Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress
.
Nature
.
2018
;
555
(
7694
):
112
-
116
.
52.
Corradini
P
,
Inghirami
G
,
Astolfi
M
, et al
.
Inactivation of tumor suppressor genes, p53 and Rb1, in plasma cell dyscrasias
.
Leukemia
.
1994
;
8
(
5
):
758
-
767
.
53.
Halazonetis
TD
,
Gorgoulis
VG
,
Bartek
J
.
An oncogene-induced DNA damage model for cancer development
.
Science
.
2008
;
319
(
5868
):
1352
-
1355
.
54.
Schoonen
PM
,
Guerrero Llobet
S
,
van Vugt
MATM
.
Replication stress: driver and therapeutic target in genomically instable cancers
.
Adv Protein Chem Struct Biol
.
2019
;
115
:
157
-
201
.
55.
Murat
P
,
Perez
C
,
Crisp
A
, et al
.
DNA replication initiation shapes the mutational landscape and expression of the human genome
.
Sci Adv
.
2022
;
8
(
45
):
eadd3686
.
56.
Vafa
O
,
Wade
M
,
Kern
S
, et al
.
c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability
.
Mol Cell
.
2002
;
9
(
5
):
1031
-
1044
.
57.
Karlsson
A
,
Deb-Basu
D
,
Cherry
A
,
Turner
S
,
Ford
J
,
Felsher
DW
.
Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression
.
Proc Natl Acad Sci U S A
.
2003
;
100
(
17
):
9974
-
9979
.
58.
Tchakarska
G
,
Sola
B
.
The double dealing of cyclin D1
.
Cell Cycle
.
2020
;
19
(
2
):
163
-
178
.
59.
Cáceres-Gutiérrez
RE
,
Alfaro-Mora
Y
,
Andonegui
MA
,
Díaz-Chávez
J
,
Herrera
LA
.
The influence of oncogenic RAS on chemotherapy and radiotherapy resistance through DNA repair pathways
.
Front Cell Dev Biol
.
2022
;
10
:
751367
.
60.
Keats
JJ
,
Fonseca
R
,
Chesi
M
, et al
.
Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma
.
Cancer Cell
.
2007
;
12
(
2
):
131
-
144
.
61.
Annunziata
CM
,
Davis
RE
,
Demchenko
Y
, et al
.
Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma
.
Cancer Cell
.
2007
;
12
(
2
):
115
-
130
.
62.
Azagra
A
,
Cobaleda
C
.
NSD2 as a promising target in hematological disorders
.
Int J Mol Sci
.
2022
;
23
(
19
):
11075
.
63.
Chesi
M
,
Nardini
E
,
Lim
RS
,
Smith
KD
,
Kuehl
WM
,
Bergsagel
PL
.
The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts
.
Blood
.
1998
;
92
(
9
):
3025
-
3034
.
64.
Santra
M
,
Zhan
F
,
Tian
E
,
Barlogie
B
,
Shaughnessy
J
.
A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains anIGH/MMSET fusion transcript
.
Blood
.
2003
;
101
(
6
):
2374
-
2376
.
65.
Pei
H
,
Zhang
L
,
Luo
K
, et al
.
MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites
.
Nature
.
2011
;
470
(
7332
):
124
-
128
.
66.
Hajdu
I
,
Ciccia
A
,
Lewis
SM
,
Elledge
SJ
.
Wolf-Hirschhorn syndrome candidate 1 is involved in the cellular response to DNA damage
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
32
):
13130
-
13134
.
67.
Shah
MY
,
Martinez-Garcia
E
,
Phillip
JM
, et al
.
MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents
.
Oncogene
.
2016
;
35
(
45
):
5905
-
5915
.
68.
Min
D-J
,
Ezponda
T
,
Kim
MK
, et al
.
MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC
.
Leukemia
.
2013
;
27
(
3
):
686
-
694
.
69.
Park
JW
,
Chae
Y-C
,
Kim
J-Y
,
Oh
H
,
Seo
S-B
.
Methylation of Aurora kinase A by MMSET reduces p53 stability and regulates cell proliferation and apoptosis
.
Oncogene
.
2018
;
37
(
48
):
6212
-
6224
.
70.
Kilchert
C
,
Wittmann
S
,
Vasiljeva
L
.
The regulation and functions of the nuclear RNA exosome complex
.
Nat Rev Mol Cell Biol
.
2016
;
17
(
4
):
227
-
239
.
71.
Tomecki
R
,
Drazkowska
K
,
Kucinski
I
, et al
.
Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target
.
Nucleic Acids Res
.
2014
;
42
(
2
):
1270
-
1290
.
72.
Segalla
S
,
Pivetti
S
,
Todoerti
K
, et al
.
The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA
.
Nucleic Acids Res
.
2015
;
43
(
10
):
5182
-
5193
.
73.
Laffleur
B
,
Batista
CR
,
Zhang
W
, et al
.
RNA exosome drives early B cell development via noncoding RNA processing mechanisms
.
Sci Immunol
.
2022
;
7
(
72
):
eabn2738
.
74.
Laffleur
B
,
Lim
J
,
Zhang
W
, et al
.
Noncoding RNA processing by DIS3 regulates chromosomal architecture and somatic hypermutation in B cells
.
Nat Genet
.
2021
;
53
(
2
):
230
-
242
.
75.
Milbury
KL
,
Paul
B
,
Lari
A
,
Fowler
C
,
Montpetit
B
,
Stirling
PC
.
Exonuclease domain mutants of yeast DIS3 display genome instability
.
Nucleus
.
2019
;
10
(
1
):
21
-
32
.
76.
Favasuli
VK
,
Ronchetti
D
,
Silvestris
I
, et al
.
DIS3 depletion in multiple myeloma causes extensive perturbation in cell cycle progression and centrosome amplification
.
Haematologica
.
2024
;
109
(
1
):
231
-
244
.
77.
Gritti
I
,
Basso
V
,
Rinchai
D
, et al
.
Loss of ribonuclease DIS3 hampers genome integrity in myeloma by disrupting DNA:RNA hybrid metabolism
.
EMBO J
.
2022
;
41
(
22
):
e108040
.
78.
Garcıa-Muse
T
,
Aguilera
A
.
R loops: from physiological to pathological roles
.
Cell
.
2019
;
179
(
3
):
604
-
618
.
79.
Bruno
T
,
Corleone
G
,
Catena
V
, et al
.
AATF /Che-1 localizes to paraspeckles and suppresses R-loops accumulation and interferon activation in multiple myeloma
.
EMBO J
.
2022
;
41
(
22
):
e109711
.
80.
van Haaften
G
,
Dalgliesh
GL
,
Davies
H
, et al
.
Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer
.
Nat Genet
.
2009
;
41
(
5
):
521
-
523
.
81.
Boila
LD
,
Ghosh
S
,
Bandyopadhyay
SK
, et al
.
KDM6 demethylases integrate DNA repair gene regulation and loss of KDM6A sensitizes human acute myeloid leukemia to PARP and BCL2 inhibition
.
Leukemia
.
2023
;
37
(
4
):
751
-
764
.
82.
Zhang
C
,
Hong
Z
,
Ma
W
, et al
.
Drosophila UTX coordinates with p53 to regulate ku80 expression in response to DNA damage
.
PLoS One
.
2013
;
8
(
11
):
e78652
.
83.
Zanconato
F
,
Cordenonsi
M
,
Piccolo
S
.
YAP/TAZ at the roots of cancer
.
Cancer Cell
.
2016
;
29
(
6
):
783
-
803
.
84.
Walker
BA
,
Mavrommatis
K
,
Wardell
CP
, et al
.
Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma
.
Blood
.
2018
;
132
(
6
):
587
-
597
.
85.
Solimini
NL
,
Luo
J
,
Elledge
SJ
.
Non-oncogene addiction and the stress phenotype of cancer cells
.
Cell
.
2007
;
130
(
6
):
986
-
988
.
86.
Luo
J
,
Solimini
NL
,
Elledge
SJ
.
Principles of cancer therapy: oncogene and non-oncogene addiction
.
Cell
.
2009
;
136
(
5
):
823
-
837
.
87.
Boise
LH
,
Kaufman
JL
,
Bahlis
NJ
,
Lonial
S
,
Lee
KP
.
The Tao of myeloma
.
Blood
.
2014
;
124
(
12
):
1873
-
1879
.
88.
Bianchi
G
,
Oliva
L
,
Cascio
P
, et al
.
The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition
.
Blood
.
2009
;
113
(
13
):
3040
-
3049
.
89.
Obeng
EA
,
Carlson
LM
,
Gutman
DM
,
Harrington
WJ
,
Lee
KP
,
Boise
LH
.
Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells
.
Blood
.
2006
;
107
(
12
):
4907
-
4916
.
90.
Murakawa
Y
,
Sonoda
E
,
Barber
LJ
, et al
.
Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells
.
Cancer Res
.
2007
;
67
(
18
):
8536
-
8543
.
91.
Jacquemont
C
,
Taniguchi
T
.
Proteasome function is required for DNA damage response and Fanconi anemia pathway activation
.
Cancer Res
.
2007
;
67
(
15
):
7395
-
7405
.
92.
Cheung
EC
,
Vousden
KH
.
The role of ROS in tumour development and progression
.
Nat Rev Cancer
.
2022
;
22
(
5
):
280
-
297
.
93.
Xiong
S
,
Chng
W-J
,
Zhou
J
.
Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma
.
Cell Mol Life Sci
.
2021
;
78
(
8
):
3883
-
3906
.
94.
Radisky
DC
,
Levy
DD
,
Littlepage
LE
, et al
.
Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability
.
Nature
.
2005
;
436
(
7047
):
123
-
127
.
95.
Markkanen
E
,
Castrec
B
,
Villani
G
,
Hübscher
U
.
A switch between DNA polymerases δ and λ promotes error-free bypass of 8-oxo-G lesions
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
50
):
20401
-
20406
.
96.
Feng
R
,
Oton
A
,
Mapara
MY
,
Anderson
G
,
Belani
C
,
Lentzsch
S
.
The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage: combination of bortezomib and PXD101 against MM
.
Br J Haematol
.
2007
;
139
(
3
):
385
-
397
.
97.
Ronca
R
,
Ghedini
GC
,
Maccarinelli
F
, et al
.
FGF trapping inhibits multiple myeloma growth through c-Myc degradation–induced mitochondrial oxidative stress
.
Cancer Res
.
2020
;
80
(
11
):
2340
-
2354
.
98.
Blokhin
N
,
Larionov
L
,
Perevodchikova
N
,
Chebotareva
L
,
Merkulova
N
.
Clinical experiences with sarcolysin in neoplastic diseases
.
Ann N Y Acad Sci
.
1958
;
68
(
3
):
1128
-
1132
.
99.
Bergsagel
DE
,
Sprague
CC
,
Austin
C
,
GRIFFITH
KM
.
Evaluation of new chemotherapeutic agents in the treatment of multiple myeloma. IV. L-Phenylalanine mustard (NSC-8806)
.
Cancer Chemother Rep
.
1962
;
21
:
87
-
99
.
100.
Alexanian
R
,
Haut
A
,
Khan
AU
, et al
.
Treatment for multiple myeloma. Combination chemotherapy with different melphalan dose regimens
.
JAMA
.
1969
;
208
(
9
):
1680
-
1685
.
101.
Falco
P
,
Bringhen
S
,
Avonto
I
, et al
.
Melphalan and its role in the management of patients with multiple myeloma
.
Expert Rev Anticancer Ther
.
2007
;
7
(
7
):
945
-
957
.
102.
Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. Myeloma Trialists’ Collaborative Group
.
J Clin Oncol
.
1998
;
16
(
12
):
3832
-
3842
.
103.
Szalat
R
,
Samur
MK
,
Fulciniti
M
, et al
.
Nucleotide excision repair is a potential therapeutic target in multiple myeloma
.
Leukemia
.
2018
;
32
(
1
):
111
-
119
.
104.
Kumar
S
,
Talluri
S
,
Pal
J
, et al
.
Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance
.
Blood Cancer J
.
2018
;
8
(
10
):
92
.
105.
Yarde
DN
,
Oliveira
V
,
Mathews
L
, et al
.
Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma
.
Cancer Res
.
2009
;
69
(
24
):
9367
-
9375
.
106.
Hazlehurst
LA
,
Enkemann
SA
,
Beam
CA
, et al
.
Genotypic and phenotypic comparisons of de novo and acquired melphalan resistance in an isogenic multiple myeloma cell line model
.
Cancer Res
.
2003
;
63
(
22
):
7900
-
7906
.
107.
Kaelin
WG
.
The concept of synthetic lethality in the context of anticancer therapy
.
Nat Rev Cancer
.
2005
;
5
(
9
):
689
-
698
.
108.
Caracciolo
D
,
Scionti
F
,
Juli
G
, et al
.
Exploiting MYC-induced PARPness to target genomic instability in multiple myeloma
.
Haematologica
.
2021
;
106
(
1
):
185
-
195
.
109.
Maruyama
J
,
Inami
K
,
Michishita
F
, et al
.
Novel YAP1 activator, identified by transcription-based functional screen, limits multiple myeloma growth
.
Mol Cancer Res
.
2018
;
16
(
2
):
197
-
211
.
110.
Neri
P
,
Ren
L
,
Gratton
K
, et al
.
Bortezomib-induced “BRCAness” sensitizes multiple myeloma cells to PARP inhibitors
.
Blood
.
2011
;
118
(
24
):
6368
-
6379
.
111.
van Weverwijk
A
,
de Visser
KE
.
Mechanisms driving the immunoregulatory function of cancer cells
.
Nat Rev Cancer
.
2023
;
23
(
4
):
193
-
215
.
112.
Kornepati
AVR
,
Rogers
CM
,
Sung
P
,
Curiel
TJ
.
The complementarity of DDR, nucleic acids and anti-tumour immunity
.
Nature
.
2023
;
619
(
7970
):
475
-
486
.
113.
Ackley
J
,
Ochoa
MA
,
Ghoshal
D
,
Roy
K
,
Lonial
S
,
Boise
LH
.
Keeping myeloma in check: the past, present and future of immunotherapy in multiple myeloma
.
Cancers (Basel)
.
2021
;
13
(
19
):
4787
.
114.
Chauhan
D
,
Ray
A
,
Viktorsson
K
, et al
.
In vitro and in vivo antitumor activity of a novel alkylating agent, melphalan-flufenamide, against multiple myeloma cells
.
Clin Cancer Res
.
2013
;
19
(
11
):
3019
-
3031
.
You do not currently have access to this content.
Sign in via your Institution