• Integration of ζ-deficient CARs into the CD3ζ gene allows generation of functional TCR-ablated CAR-T cells for allogeneic off-the-shelf use.

  • CD3ζ-editing platform allows CAR redirection of NK cells without affecting their canonical functions.

Abstract

Chimeric antigen receptor (CAR)-redirected immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in nonphysiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Random gene transfer modalities pose a risk of malignant transformation by insertional mutagenesis. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3ζ gene as the CAR’s activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR expression and redirection of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3ζ-CD19-CAR-T cells exhibited comparable leukemia control to TCRα chain constant (TRAC)-replaced and lentivirus-transduced CAR-T cells in vivo. Tuning of CD3ζ-CAR-expression levels significantly improved the in vivo efficacy. Notably, CD3ζ gene editing enabled redirection of NK cells without impairing their canonical functions. Thus, CD3ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes.

1.
Kalos
M
,
Levine
BL
,
Porter
DL
, et al
.
T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia
.
Sci Transl Med
.
2011
;
3
(
95
):
95ra73
.
2.
Liu
E
,
Marin
D
,
Banerjee
P
, et al
.
Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors
.
N Engl J Med
.
2020
;
382
(
6
):
545
-
553
.
3.
MacDonald
KG
,
Hoeppli
RE
,
Huang
Q
, et al
.
Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor
.
J Clin Invest
.
2016
;
126
(
4
):
1413
-
1424
.
4.
Roemhild
A
,
Otto
NM
,
Moll
G
, et al
.
Regulatory T cells for minimising immune suppression in kidney transplantation: phase I/IIa clinical trial
.
BMJ
.
2020
;
371
:
m3734
.
5.
Maude
SL
,
Frey
N
,
Shaw
PA
, et al
.
Chimeric antigen receptor T cells for sustained remissions in leukemia
.
N Engl J Med
.
2014
;
371
(
16
):
1507
-
1517
.
6.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
7.
Schuster
SJ
,
Svoboda
J
,
Chong
EA
, et al
.
Chimeric antigen receptor T cells in refractory B-cell lymphomas
.
N Engl J Med
.
2017
;
377
(
26
):
2545
-
2554
.
8.
Raje
N
,
Berdeja
J
,
Lin
Y
, et al
.
Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2019
;
380
(
18
):
1726
-
1737
.
9.
Geisler
C
,
Kuhlmann
J
,
Rubin
B
.
Assembly, intracellular processing, and expression at the cell surface of the human alpha beta T cell receptor/CD3 complex. Function of the CD3-zeta chain
.
J Immunol
.
1989
;
143
(
12
):
4069
-
4077
.
10.
Irving
BA
,
Weiss
A
.
The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways
.
Cell
.
1991
;
64
(
5
):
891
-
901
.
11.
Moingeon
P
,
Lucich
JL
,
McConkey
DJ
, et al
.
CD3 zeta dependence of the CD2 pathway of activation in T lymphocytes and natural killer cells
.
Proc Natl Acad Sci U S A
.
1992
;
89
(
4
):
1492
-
1496
.
12.
Omer
B
,
Cardenas
MG
,
Pfeiffer
T
, et al
.
A costimulatory CAR improves TCR-based cancer immunotherapy
.
Cancer Immunol Res
.
2022
;
10
(
4
):
512
-
524
.
13.
Majzner
RG
,
Ramakrishna
S
,
Yeom
KW
, et al
.
GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas
.
Nature
.
2022
;
603
(
7903
):
934
-
941
.
14.
Mougiakakos
D
,
Krönke
G
,
Völkl
S
, et al
.
CD19-targeted CAR T cells in refractory systemic lupus erythematosus
.
N Engl J Med
.
2021
;
385
(
6
):
567
-
569
.
15.
Mackensen
A
,
Müller
F
,
Mougiakakos
D
, et al
.
Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus
.
Nat Med
.
2022
;
28
(
10
):
2124
-
2132
.
16.
Müller
F
,
Boeltz
S
,
Knitza
J
, et al
.
CD19-targeted CAR T cells in refractory antisynthetase syndrome
.
Lancet
.
2023
;
401
(
10379
):
815
-
818
.
17.
Eyquem
J
,
Mansilla-Soto
J
,
Giavridis
T
, et al
.
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection
.
Nature
.
2017
;
543
(
7643
):
113
-
117
.
18.
Odak
A
,
Yuan
H
,
Feucht
J
, et al
.
Novel extragenic genomic safe harbors for precise therapeutic T cell engineering
.
Blood
.
2023
;
141
(
22
):
2698
-
2712
.
19.
Scholler
J
,
Brady
TL
,
Binder-Scholl
G
, et al
.
Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells
.
Sci Transl Med
.
2012
;
4
(
132
):
132ra53
.
20.
Fraietta
JA
,
Nobles
CL
,
Sammons
MA
, et al
.
Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells
.
Nature
.
2018
;
558
(
7709
):
307
-
312
.
21.
Shah
NN
,
Qin
H
,
Yates
B
, et al
.
Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy
.
Blood Adv
.
2019
;
3
(
15
):
2317
-
2322
.
22.
Micklethwaite
KP
,
Gowrishankar
K
,
Gloss
BS
, et al
.
Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells
.
Blood
.
2021
;
138
(
16
):
1391
-
1405
.
23.
Bishop
DC
,
Clancy
LE
,
Simms
R
, et al
.
Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells
.
Blood
.
2021
;
138
(
16
):
1504
-
1509
.
24.
Harrison
SJ
,
Nguyen
T
,
Rahman
M
, et al
.
CAR+ T-cell lymphoma post ciltacabtagene autoleucel therapy for relapsed refractory multiple myeloma [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
6939
.
25.
Wagner
DL
,
Koehl
U
,
Chmielewski
M
,
Scheid
C
,
Stripecke
R
.
Review: sustainable clinical development of CAR-T cells-switching from viral transduction towards CRISPR-cas gene editing
.
Front Immunol
.
2022
;
13
:
865424
.
26.
Müller
TR
,
Jarosch
S
,
Hammel
M
, et al
.
Targeted T cell receptor gene editing provides predictable T cell product function for immunotherapy
.
Cell Rep Med
.
2021
;
2
(
8
):
100374
.
27.
MacLeod
DT
,
Antony
J
,
Martin
AJ
, et al
.
Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells
.
Mol Ther
.
2017
;
25
(
4
):
949
-
961
.
28.
Dai
X
,
Park
JJ
,
Du
Y
, et al
.
One-step generation of modular CAR-T cells with AAV-Cpf1
.
Nat Methods
.
2019
;
16
(
3
):
247
-
254
.
29.
Wiebking
V
,
Lee
CM
,
Mostrel
N
, et al
.
Genome editing of donor-derived T-cells to generate allogenic chimeric antigen receptor-modified T cells: optimizing αβ T cell-depleted haploidentical hematopoietic stem cell transplantation
.
Haematologica
.
2021
;
106
(
3
):
847
-
858
.
30.
Zhang
J
,
Hu
Y
,
Yang
J
, et al
.
Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL
.
Nature
.
2022
;
609
(
7926
):
369
-
374
.
31.
Allen
AG
,
Khan
SQ
,
Margulies
CM
, et al
.
A highly efficient transgene knock-in technology in clinically relevant cell types
.
Nat Biotechnol
.
2024
;
42
(
3
):
458
-
469
.
32.
Torikai
H
,
Reik
A
,
Liu
P-Q
, et al
.
A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR
.
Blood
.
2012
;
119
(
24
):
5697
-
5705
.
33.
Kath
J
,
Du
W
,
Pruene
A
, et al
.
Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells
.
Mol Ther Methods Clin Dev
.
2022
;
25
:
311
-
330
.
34.
Roth
TL
,
Puig-Saus
C
,
Yu
R
, et al
.
Reprogramming human T cell function and specificity with non-viral genome targeting
.
Nature
.
2018
;
559
(
7714
):
405
-
409
.
35.
Nguyen
DN
,
Roth
TL
,
Li
PJ
, et al
.
Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency
.
Nat Biotechnol
.
2020
;
38
(
1
):
44
-
49
.
36.
Turchiano
G
,
Andrieux
G
,
Klermund
J
, et al
.
Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq
.
Cell Stem Cell
.
2021
;
28
(
6
):
1136
-
1147.e5
.
37.
Rhiel
M
,
Geiger
K
,
Andrieux
G
, et al
.
T-CAST: an optimized CAST-Seq pipeline for TALEN confirms superior safety and efficacy of obligate-heterodimeric scaffolds
.
Front Genome
.
2023
;
5
:
1130736
.
38.
Braun
T
,
Pruene
A
,
Darguzyte
M
, et al
.
Non-viral TRAC-knocked-in CD19KICAR-T and gp350KICAR-T cells tested against Burkitt lymphomas with type 1 or 2 EBV infection: in vivo cellular dynamics and potency
.
Front Immunol
.
2023
;
14
:
1086433
.
39.
Hermans
IF
,
Silk
JD
,
Yang
J
, et al
.
The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo
.
J Immunol Methods
.
2004
;
285
(
1
):
25
-
40
.
40.
Künkele
A
,
Taraseviciute
A
,
Finn
LS
, et al
.
Preclinical assessment of CD171-directed CAR T-cell adoptive therapy for childhood neuroblastoma: CE7 epitope target safety and product manufacturing feasibility
.
Clin Cancer Res
.
2017
;
23
(
2
):
466
-
477
.
41.
Textor
A
,
Listopad
JJ
,
Wührmann
LL
, et al
.
Efficacy of CAR T-cell therapy in large tumors relies upon stromal targeting by IFNγ
.
Cancer Res
.
2014
;
74
(
23
):
6796
-
6805
.
42.
Ahmed
N
,
Brawley
VS
,
Hegde
M
, et al
.
Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma
.
J Clin Oncol
.
2015
;
33
(
15
):
1688
-
1696
.
43.
Ahmed
N
,
Brawley
V
,
Hegde
M
, et al
.
HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma
.
JAMA Oncol
.
2017
;
3
(
8
):
1094
-
1101
.
44.
Hegde
M
,
Joseph
SK
,
Pashankar
F
, et al
.
Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma
.
Nat Commun
.
2020
;
11
(
1
):
3549
.
45.
Yang
S
,
Cohen
CJ
,
Peng
PD
, et al
.
Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition
.
Gene Ther
.
2008
;
15
(
21
):
1411
-
1423
.
46.
Liu
Z
,
Chen
O
,
Wall
JBJ
, et al
.
Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector
.
Sci Rep
.
2017
;
7
(
1
):
2193
.
47.
Noyan
F
,
Zimmermann
K
,
Hardtke-Wolenski
M
, et al
.
Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor
.
Am J Transplant
.
2017
;
17
(
4
):
917
-
930
.
48.
Deniger
DC
,
Switzer
K
,
Mi
T
, et al
.
Bispecific T-cells expressing polyclonal repertoire of endogenous γδ T-cell receptors and introduced CD19-specific chimeric antigen receptor
.
Mol Ther
.
2013
;
21
(
3
):
638
-
647
.
49.
Daher
M
,
Rezvani
K
.
Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer
.
Cancer Discov
.
2021
;
11
(
1
):
45
-
58
.
50.
Naeimi Kararoudi
M
,
Tullius
BP
,
Chakravarti
N
, et al
.
Genetic and epigenetic modification of human primary NK cells for enhanced antitumor activity
.
Semin Hematol
.
2020
;
57
(
4
):
201
-
212
.
51.
Robbins
GM
,
Wang
M
,
Pomeroy
EJ
,
Moriarity
BS
.
Nonviral genome engineering of natural killer cells
.
Stem Cell Res Ther
.
2021
;
12
(
1
):
350
.
52.
Klingemann
H
.
The NK-92 cell line-30 years later: its impact on natural killer cell research and treatment of cancer
.
Cytotherapy
.
2023
;
25
(
5
):
451
-
457
.
53.
Barden
M
,
Holzinger
A
,
Velas
L
, et al
.
CAR and TCR form individual signaling synapses and do not cross-activate, however, can co-operate in T cell activation
.
Front Immunol
.
2023
;
14
:
1110482
.
54.
Qasim
W
.
Genome edited allogeneic donor “universal” chimeric antigen receptor T Cells
.
Blood
.
2023;141(8):835-845
.
55.
Kath
J
,
Du
W
,
Martini
S
, et al
.
CAR NK-92 cell-mediated depletion of residual TCR+ cells for ultrapure allogeneic TCR-deleted CAR T-cell products
.
Blood Adv
.
2023
;
7
(
15
):
4124
-
4134
.
56.
Weber
EW
,
Parker
KR
,
Sotillo
E
, et al
.
Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling
.
Science
.
2021
;
372
(
6537
):
eaba1786
.
57.
Ruella
M
,
Xu
J
,
Barrett
DM
, et al
.
Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell
.
Nat Med
.
2018
;
24
(
10
):
1499
-
1503
.
58.
Gomes-Silva
D
,
Mukherjee
M
,
Srinivasan
M
, et al
.
Tonic 4-1BB costimulation in chimeric antigen receptors impedes T Cell survival and is vector dependent
.
Cell Rep
.
2017
;
21
(
1
):
17
-
26
.
59.
Rodriguez-Marquez
P
,
Calleja-Cervantes
ME
,
Serrano
G
, et al
.
CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome
.
Sci Adv
.
2022
;
8
(
39
):
eabo0514
.
60.
Ho
J-Y
,
Wang
L
,
Liu
Y
, et al
.
Promoter usage regulating the surface density of CAR molecules may modulate the kinetics of CAR-T cells in vivo
.
Mol Ther Methods Clin Dev
.
2021
;
21
:
237
-
246
.
61.
Flugel
CL
,
Majzner
RG
,
Krenciute
G
, et al
.
Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours
.
Nat Rev Clin Oncol
.
2023
;
20
(
1
):
49
-
62
.
62.
Attaf
M
,
Legut
M
,
Cole
DK
,
Sewell
AK
.
The T cell antigen receptor: the Swiss army knife of the immune system
.
Clin Exp Immunol
.
2015
;
181
(
1
):
1
-
18
.
63.
Roberts
JL
,
Lauritsen
JPH
,
Cooney
M
, et al
.
T−B+NK+ severe combined immunodeficiency caused by complete deficiency of the CD3ζ subunit of the T-cell antigen receptor complex
.
Blood
.
2007
;
109
(
8
):
3198
-
3206
.
64.
Valés-Gómez
M
,
Esteso
G
,
Aydogmus
C
, et al
.
Natural killer cell hyporesponsiveness and impaired development in a CD247-deficient patient
.
J Allergy Clin Immunol
.
2016
;
137
(
3
):
942
. 5.e4.
65.
Dahlvang
JD
,
Dick
JK
,
Sangala
JA
, et al
.
Ablation of SYK kinase from expanded primary human NK cells via CRISPR/Cas9 enhances cytotoxicity and cytokine production
.
J Immunol
.
2023
:
ji2200488
.
66.
Shy
BR
,
Vykunta
VS
,
Ha
A
, et al
.
High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails
.
Nat Biotechnol
.
2023
;
41
(
4
):
521
-
531
.
67.
Qasim
W
,
Zhan
H
,
Samarasinghe
S
, et al
.
Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells
.
Sci Transl Med
.
2017
;
9
(
374
):
eaaj2013
.
68.
Benjamin
R
,
Graham
C
,
Yallop
D
, et al
.
Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies
.
Lancet
.
2020
;
396
(
10266
):
1885
-
1894
.
69.
Wagner
DL
,
Fritsche
E
,
Pulsipher
MA
, et al
.
Immunogenicity of CAR T cells in cancer therapy
.
Nat Rev Clin Oncol
.
2021
;
18
(
6
):
379
-
393
.
70.
Prinzing
B
,
Zebley
CC
,
Petersen
CT
, et al
.
Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity
.
Sci Transl Med
.
2021
;
13
(
620
):
eabh0272
.
71.
Carnevale
J
,
Shifrut
E
,
Kale
N
, et al
.
RASA2 ablation in T cells boosts antigen sensitivity and long-term function
.
Nature
.
2022
;
609
(
7925
):
174
-
182
.
72.
Wiebking
V
,
Patterson
JO
,
Martin
R
, et al
.
Metabolic engineering generates a transgene-free safety switch for cell therapy
.
Nat Biotechnol
.
2020
;
38
(
12
):
1441
-
1450
.
73.
Torikai
H
,
Reik
A
,
Soldner
F
, et al
.
Toward eliminating HLA class I expression to generate universal cells from allogeneic donors
.
Blood
.
2013
;
122
(
8
):
1341
-
1349
.
74.
Kagoya
Y
,
Guo
T
,
Yeung
B
, et al
.
Genetic ablation of HLA class I, class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy
.
Cancer Immunol Res
.
2020
;
8
(
7
):
926
-
936
.
75.
Pomeroy
EJ
,
Hunzeker
JT
,
Kluesner
MG
, et al
.
A genetically engineered primary human natural killer cell platform for cancer immunotherapy
.
Mol Ther
.
2020
;
28
(
1
):
52
-
63
.
76.
Daher
M
,
Basar
R
,
Gokdemir
E
, et al
.
Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells
.
Blood
.
2021
;
137
(
5
):
624
-
636
.
77.
Diorio
C
,
Murray
R
,
Naniong
M
, et al
.
Cytosine base editing enables quadruple-edited allogeneic CAR-T cells for T-ALL
.
Blood
.
2022
;
140
(
6
):
619
-
629
.
78.
Komor
AC
,
Kim
YB
,
Packer
MS
,
Zuris
JA
,
Liu
DR
.
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
.
Nature
.
2016
;
533
(
7603
):
420
-
424
.
79.
Gaudelli
NM
,
Komor
AC
,
Rees
HA
, et al
.
Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage
.
Nature
.
2017
;
551
(
7681
):
464
-
471
.
80.
Glaser
V
,
Flugel
C
,
Kath
J
, et al
.
Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells
.
Genome Biol
.
2023
;
24
(
1
):
89
.
You do not currently have access to this content.
Sign in via your Institution