Abstract

From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.

1.
Esko
JD
,
Selleck
SB
.
Order out of chaos: assembly of ligand binding sites in heparan sulfate
.
Annu Rev Biochem
.
2002
;
71
:
435
-
471
.
2.
Sarrazin
S
,
Lamanna
WC
,
Esko
JD
.
Heparan sulfate proteoglycans
.
Cold Spring Harb Perspect Biol
.
2011
;
3
(
7
):
a004952
.
3.
Bülow
HE
,
Hobert
O
.
The molecular diversity of glycosaminoglycans shapes animal development
.
Annu Rev Cell Dev Biol
.
2006
;
22
:
375
-
407
.
4.
Xu
D
,
Esko
JD
.
Demystifying heparan sulfate–protein interactions
.
Annu Rev Biochem
.
2014
;
83
:
129
-
157
.
5.
Iozzo
RV
,
Schaefer
L
.
Proteoglycan form and function: a comprehensive nomenclature of proteoglycans
.
Matrix Biol
.
2015
;
42
:
11
-
55
.
6.
Papy-Garcia
D
,
Albanese
P
.
Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells
.
Glycoconj J
.
2017
;
34
(
3
):
377
-
391
.
7.
Roberts
R
,
Gallagher
J
,
Spooncer
E
,
Allen
TD
,
Bloomfield
F
,
Dexter
TM
.
Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis
.
Nature
.
1988
;
332
(
6162
):
376
-
378
.
8.
Rodgers
KD
,
San Antonio
JD
,
Jacenko
O
.
Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators
.
Dev Dyn
.
2008
;
237
(
10
):
2622
-
2642
.
9.
Ramsden
L
,
Rider
CC
.
Selective and differential binding of interleukin (IL)-1α, IL-1β, IL-2 and IL-6 to glycosaminoglycans
.
Eur J Immunol
.
1992
;
22
(
11
):
3027
-
3031
.
10.
Gupta
P
,
Oegema
TR
,
Brazil
JJ
,
Dudek
AZ
,
Slungaard
A
,
Verfaillie
CM
.
Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche
.
Blood
.
1998
;
92
(
12
):
4641
-
4651
.
11.
Lortat-Jacob
H
,
Garrone
P
,
Banchereau
J
,
Grimaud
J-A
.
Human interleukin 4 is a glycosaminoglycan-binding protein
.
Cytokine
.
1997
;
9
(
2
):
101
-
105
.
12.
den Dekker
E
,
Grefte
S
,
Huijs
T
, et al
.
Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells
.
J Immunol
.
2008
;
180
(
6
):
3680
-
3688
.
13.
Lipscombe
R J
,
Nakhoul
AM
,
Sanderson
CJ
,
Coombe
DR
.
Interleukin-5 binds to heparin/heparan sulfate. a model for an interaction with extracellular matrix
.
J Leukoc Biol
.
1998
;
63
(
3
):
342
-
350
.
14.
Mummery
RS
,
Rider
CC
.
Characterization of the heparin-binding properties of IL-6
.
J Immunol
.
2000
;
165
(
10
):
5671
-
5679
.
15.
Clarke
D
,
Katoh
O
,
Gibbs
R
,
Griffiths
S
,
Gordon
M
.
Interaction of interleukin 7 (IL-7) with glycosaminoglycans and its biological relevance
.
Cytokine
.
1995
;
7
(
4
):
325
-
330
.
16.
Webb
L
,
Ehrengruber
MU
,
Clark-Lewis
I
,
Baggiolini
M
,
Rot
A
.
Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8
.
Proc Natl Acad Sci U S A
.
1993
;
90
(
15
):
7158
-
7162
.
17.
Pichert
A
,
Samsonov
SA
,
Theisgen
S
, et al
.
Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling
.
Glycobiology
.
2012
;
22
(
1
):
134
-
145
.
18.
Zong
C
,
Venot
A
,
Li
X
, et al
.
Heparan sulfate microarray reveals that heparan sulfate–protein binding exhibits different ligand requirements
.
J Am Chem Soc
.
2017
;
139
(
28
):
9534
-
9543
.
19.
Salek-Ardakani
S
,
Arrand
JR
,
Shaw
D
,
Mackett
M
.
Heparin and heparan sulfate bind interleukin-10 and modulate its activity
.
Blood
.
2000
;
96
(
5
):
1879
-
1888
.
20.
Künze
G
,
Gehrcke
J-P
,
Pisabarro
MT
,
Huster
D
.
NMR characterization of the binding properties and conformation of glycosaminoglycans interacting with interleukin-10
.
Glycobiology
.
2014
;
24
(
11
):
1036
-
1049
.
21.
Hasan
M
,
Najjam
S
,
Gordon
MY
,
Gibbs
RV
,
Rider
CC
.
IL-12 is a heparin-binding cytokine
.
J Immunol
.
1999
;
162
(
2
):
1064
-
1070
.
22.
Reeves
EP
,
Williamson
M
,
Byrne
B
, et al
.
IL-8 dictates glycosaminoglycan binding and stability of IL-18 in cystic fibrosis
.
J Immunol
.
2010
;
184
(
3
):
1642
-
1652
.
23.
Chen
Z
,
Cui
Y
,
Yao
Y
, et al
.
Heparan sulfate regulates IL-21 bioavailability and signal strength that control germinal center B cell selection and differentiation
.
Sci Immunol
.
2023
;
8
(
80
):
eadd1728
.
24.
Lau
EK
,
Paavola
CD
,
Johnson
Z
, et al
.
Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: implications for structure and function in vivo
.
J Biol Chem
.
2004
;
279
(
21
):
22294
-
22305
.
25.
Sweeney
MD
,
Yu
Y
,
Leary
JA
.
Effects of sulfate position on heparin octa saccharide binding to CCL2 examined by tandem mass spectrometry
.
J Am Soc Mass Spectrom
.
2006
;
17
(
8
):
1114
-
1119
.
26.
Schenauer
MR
,
Yu
Y
,
Sweeney
MD
,
Leary
JA
.
CCR2 chemokines bind selectively to acetylated heparan sulfate octa saccharides
.
J Biol Chem
.
2007
;
282
(
35
):
25182
-
25188
.
27.
Gray
AL
,
Karlsson
R
,
Roberts
ARE
, et al
.
Chemokine CXCL4 interactions with extracellular matrix proteoglycans mediate widespread immune cell recruitment independent of chemokine receptors
.
Cell Rep
.
2023
;
42
(
1
):
111930
.
28.
Koopmann
W
,
Ediriwickrema
C
,
Krangel
MS
.
Structure and function of the glycosaminoglycan binding site of chemokine macrophage-inflammatory protein-1β
.
J Immunol
.
1999
;
163
(
4
):
2120
-
2127
.
29.
Mbemba
E
,
Slimani
H
,
Atemezem
A
,
Saffar
L
,
Gattegno
L
.
Glycans are involved in RANTES binding to CCR5 positive as well as to CCR5 negative cells
.
Biochim Biophys Acta
.
2001
;
1510
(
1-2
):
354
-
366
.
30.
Ali
S
,
Robertson
H
,
Wain
JH
,
Isaacs
JD
,
Malik
G
,
Kirby
JA
.
A non-glycosaminoglycan-binding variant of CC chemokine ligand 7 (monocyte chemoattractant protein-3) antagonizes chemokine-mediated inflammation
.
J Immunol
.
2005
;
175
(
2
):
1257
-
1266
.
31.
Cochran
S
,
Li
CP
,
Ferro
V
.
A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins
.
Glycoconj J
.
2009
;
26
(
5
):
577
-
587
.
32.
Ellyard
JI
,
Simson
L
,
Bezos
A
,
Johnston
K
,
Freeman
C
,
Parish
CR
.
Eotaxin selectively binds heparin: an interaction that protects eotaxin from proteolysis and potentiates chemotactic activity in vivo
.
J Biol Chem
.
2007
;
282
(
20
):
15238
-
15247
.
33.
Culley
FJ
,
Fadlon
EJ
,
Kirchem
A
,
Williams
TJ
,
Jose
PJ
,
Pease
JE
.
Proteoglycans are potent modulators of the biological responses of eosinophils to chemokines
.
Eur J Immunol
.
2003
;
33
(
5
):
1302
-
1310
.
34.
Pum
A
,
Ennemoser
M
,
Gerlza
T
,
Kungl
AJ
.
The role of heparan sulfate in CCL26-induced eosinophil chemotaxis
.
Int J Mol Sci
.
2022
;
23
(
12
):
6519
.
35.
Kishimoto
S
,
Nakamura
S
,
Hattori
H
, et al
.
Human stem cell factor (SCF) is a heparin-binding cytokine
.
J Biochem
.
2009
;
145
(
3
):
275
-
278
.
36.
Gordon
MY
,
Riley
GP
,
Watt
SM
,
Greaves
MF
.
Compartmentalization of a hematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment
.
Nature
.
1987
;
326
(
6111
):
403
-
405
.
37.
Lyon
M
,
Deakin
JA
,
Mizuno
K
,
Nakamura
T
,
Gallagher
JT
.
Interaction of hepatocyte growth factor with heparan sulfate. elucidation of the major heparan sulfate structural determinants
.
J Biol Chem
.
1994
;
269
(
15
):
11216
-
11223
.
38.
Karlsson
R
,
Chopra
P
,
Joshi
A
, et al
.
Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates
.
Sci Adv
.
2021
;
7
(
52
):
eabl6026
.
39.
Murphy
JW
,
Cho
Y
,
Sachpatzidis
A
,
Fan
C
,
Hodsdon
ME
,
Lolis
E
.
Structural and functional basis of CXCL12 (stromal cell-derived factor-1α) binding to heparin
.
J Biol Chem
.
2007
;
282
(
13
):
10018
-
10027
.
40.
Monneau
YR
,
Luo
L
,
Sankaranarayanan
NV
, et al
.
Solution structure of CXCL13 and heparan sulfate binding show that GAG binding site and cellular signaling rely on distinct domains
.
Open Biol
.
2017
;
7
(
10
):
170133
.
41.
Kreuger
J
,
Prydz
K
,
Pettersson
RF
,
Lindahl
U
,
Salmivirta
M
.
Characterization of fibroblast growth factor 1 binding heparan sulfate domain
.
Glycobiology
.
1999
;
9
(
7
):
723
-
729
.
42.
Yayon
A
,
Klagsbrun
M
,
Esko
JD
,
Leder
P
,
Ornitz
DM
.
Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor
.
Cell
.
1991
;
64
(
4
):
841
-
848
.
43.
Gitay-Goren
H
,
Soker
S
,
Vlodavsky
I
,
Neufeld
G
.
The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules
.
J Biol Chem
.
1992
;
267
(
9
):
6093
-
6098
.
44.
Robinson
CJ
,
Mulloy
B
,
Gallagher
JT
,
Stringer
SE
.
VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase
.
J Biol Chem
.
2006
;
281
(
3
):
1731
-
1740
.
45.
Higashiyama
S
,
Abraham
JA
,
Miller
J
,
Fiddes
JC
,
Klagsbrun
M
.
A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF
.
Science
.
1991
;
251
(
4996
):
936
-
939
.
46.
Feyzi
E
,
Lustig
F
,
Fager
G
,
Spillmann
D
,
Lindahl
U
,
Salmivirta
M
.
Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain
.
J Biol Chem
.
1997
;
272
(
9
):
5518
-
5524
.
47.
Reijmers
RM
,
Groen
RWJ
,
Kuil
A
, et al
.
Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival
.
Blood
.
2011
;
117
(
23
):
6162
-
6171
.
48.
Hendriks
J
,
Planelles
L
,
de Jong-Odding
J
, et al
.
Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation
.
Cell Death Differ
.
2005
;
12
(
6
):
637
-
648
.
49.
Luster
AD
,
Greenberg
SM
,
Leder
P
.
The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation
.
J Exp Med
.
1995
;
182
(
1
):
219
-
231
.
50.
Lortat-Jacob
H
,
Grimaud
J-A
.
Interferon-γ binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule
.
FEBS Lett
.
1991
;
280
(
1
):
152
-
154
.
51.
Lortat-Jacob
H
,
Grimaud
J-A
.
Binding of interferon-gamma to heparan sulfate is restricted to the heparin-like domains ad involves carboxylic-but not N-sulfated-groups
.
Biochim Biophys Acta
.
1992
;
1117
(
2
):
126
-
130
.
52.
Lyon
M
,
Rushton
G
,
Gallagher
JT
.
The interaction of the transforming growth factor-βs with heparin/heparan sulfate is isoform-specific
.
J Biol Chem
.
1997
;
272
(
29
):
18000
-
18006
.
53.
McCaffrey
TA
,
Falcone
DJ
,
Du
B
.
Transforming growth factor-β1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-β1
.
J Cell Physiol
.
1992
;
152
(
2
):
430
-
440
.
54.
Hu
Z
,
Wang
C
,
Xiao
Y
, et al
.
NDST1-dependent heparan sulfate regulates BMP signaling and internalization in lung development
.
J Cell Sci
.
2009
;
122
(
Pt 8
):
1145
-
1154
.
55.
Denardo
A
,
Elli
S
,
Federici
S
, et al
.
BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues
.
Biochim Biophys Acta Gen Subj
.
2021
;
1865
(
2
):
129799
.
56.
Irie
A
,
Habuchi
H
,
Kimata
K
,
Sanai
Y
.
Heparan sulfate is required for bone morphogenetic protein-7 signaling
.
Biochem Biophys Res Commun
.
2003
;
308
(
4
):
858
-
865
.
57.
Paine-Saunders
S
,
Viviano
BL
,
Economides
AN
,
Saunders
S
.
Heparan sulfate proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic protein gradients
.
J Biol Chem
.
2002
;
277
(
3
):
2089
-
2096
.
58.
Viviano
BL
,
Paine-Saunders
S
,
Gasiunas
N
,
Gallagher
J
,
Saunders
S
.
Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin
.
J Biol Chem
.
2004
;
279
(
7
):
5604
-
5611
.
59.
Wang
Y
,
Liu
X
,
Obser
T
, et al
.
Heparan sulfate dependent binding of plasmatic von Willebrand factor to blood circulating melanoma cells attenuates metastasis
.
Matrix Biol
.
2022
;
111
:
76
-
94
.
60.
Majka
M
,
Janowska-Wieczorek
A
,
Ratajczak
J
, et al
.
Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner
.
Blood
.
2001
;
97
(
10
):
3075
-
3085
.
61.
Lortat-Jacob
H
,
Grosdidier
A
,
Imberty
A
.
Structural diversity of heparan sulfate binding domains in chemokines
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
3
):
1229
-
1234
.
62.
Hook
M
,
Bjork
I
,
Hopwood
J
,
Lindahl
U
.
Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin
.
FEBS Lett
.
1976
;
66
(
1
):
90
-
93
.
63.
Lam
L
,
Silbert
J
,
Rosenberg
R
.
The separation of active and inactive forms of heparin
.
Biochem Biophys Res Commun
.
1976
;
69
(
2
):
570
-
577
.
64.
Lindahl
U
,
Bäckström
G
,
Thunberg
L
,
Leder
IG
.
Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin
.
Proc Natl Acad Sci U S A
.
1980
;
77
(
11
):
6551
-
6555
.
65.
Mazzon
C
,
Anselmo
A
,
Soldani
C
, et al
.
Agrin is required for survival and function of monocytic cells
.
Blood
.
2012
;
119
(
23
):
5502
-
5511
.
66.
Anselmo
A
,
Lauranzano
E
,
Soldani
C
, et al
.
Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche
.
Cell Death Differ
.
2016
;
23
(
8
):
1322
-
1330
.
67.
Abrink
M
,
Grujic
M
,
Pejler
G
.
Serglycin is essential for maturation of mast cell secretory granule
.
J Biol Chem
.
2004
;
279
(
39
):
40897
-
40905
.
68.
Woulfe
DS
,
Lilliendahl
JK
,
August
S
, et al
.
Serglycin proteoglycan deletion induces defects in platelet aggregation and thrombus formation in mice
.
Blood
.
2008
;
111
(
7
):
3458
-
3467
.
69.
Grujic
M
,
Braga
T
,
Lukinius
A
, et al
.
Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage
.
J Biol Chem
.
2005
;
280
(
39
):
33411
-
33418
.
70.
Wernersson
S
,
Braga
T
,
Sawesi
O
, et al
.
Age-related enlargement of lymphoid tissue and altered leukocyte composition in serglycin-deficient mice
.
J Leukoc Biol
.
2009
;
85
(
3
):
401
-
408
.
71.
Khurana
S
,
Margamuljana
L
,
Joseph
C
,
Schouteden
S
,
Buckley
SM
,
Verfaillie
CM
.
Glypican-3–mediated inhibition of CD26 by TFPI: a novel mechanism in hematopoietic stem cell homing and maintenance
.
Blood
.
2013
;
121
(
14
):
2587
-
2595
.
72.
Viviano
BL
,
Silverstein
L
,
Pflederer
C
,
Paine-Saunders
S
,
Mills
K
,
Saunders
S
.
Altered hematopoiesis in glypican-3-deficient mice results in decreased osteoclast differentiation and a delay in endochondral ossification
.
Dev Biol
.
2005
;
282
(
1
):
152
-
162
.
73.
Spinler
K
,
Bajaj
J
,
Ito
T
, et al
.
A stem cell reporter-based platform to identify and target drug resistant stem cells in myeloid leukemia
.
Nat Commun
.
2020
;
11
:
5998
. 15.
74.
Lamichhane
BS
,
Bisgrove
BW
,
Su
Y-C
,
Demarest
BL
,
Yost
HJ
.
Syndecan 2 regulates hematopoietic lineages and infection resolution in zebrafish
.
bioRxiv
.
Preprint posted online 5 May 2020
.
75.
Endo
T
,
Ito
K
,
Morimoto
J
, et al
.
Syndecan 4 regulation of the development of autoimmune arthritis in mice by modulating B cell migration and germinal center formation
.
Arthritis Rheumatol
.
2015
;
67
(
9
):
2512
-
2522
.
76.
Grigorian
M
,
Liu
T
,
Banerjee
U
,
Hartenstein
V
.
The proteoglycan Trol controls the architecture of the extracellular matrix and balances proliferation and differentiation of blood progenitors in the Drosophila lymph gland
.
Dev Biol
.
2013
;
384
(
2
):
301
-
312
.
77.
Raman
C
,
Sestero
CM
,
Orlandella
RM
, et al
.
TGF-β receptor 3 (betaglycan) regulates Th1 differentiation and T dependent B cell responses
.
J Immunol
.
2016
;
196
(
suppl 1
):
189.12
.
78.
Shekels
LL
,
Buelt-Gebhardt
M
,
Gupta
P
.
Effect of systemic heparan sulfate haploinsufficiency on steady state hematopoiesis and engraftment of hematopoietic stem cells
.
Blood Cells Mol Dis
.
2015
;
55
(
1
):
3
-
9
.
79.
Garner
OB
,
Yamaguchi
Y
,
Esko
JD
,
Videm
V
.
Small changes in lymphocyte development and activation in mice through tissue-specific alteration of heparan sulphate
.
Immunology
.
2008
;
125
(
3
):
420
-
429
.
80.
Volpi
S
,
Yamazaki
Y
,
Brauer
PM
, et al
.
EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay PID links heparan sulfate to thymopoiesis
.
J Exp Med
.
2017
;
214
(
3
):
623
-
637
.
81.
Wang
L
,
Fuster
M
,
Sriramarao
P
,
Esko
JD
.
Endothelial heparan sulfate deficiency impairs L-selectin-and chemokine-mediated neutrophil trafficking during inflammatory responses
.
Nat Immunol
.
2005
;
6
(
9
):
902
-
910
.
82.
Forsberg
E
,
Pejler
G
,
Ringvall
M
, et al
.
Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme
.
Nature
.
1999
;
400
(
6746
):
773
-
776
.
83.
Pallerla
SR
,
Lawrence
R
,
Lewejohann
L
, et al
.
Altered heparan sulfate structure in mice with deleted NDST3 gene function
.
J Biol Chem
.
2008
;
283
(
24
):
16885
-
16894
.
84.
Axelsson
J
,
Xu
D
,
Kang
BN
, et al
.
Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice
.
Blood
.
2012
;
120
(
8
):
1742
-
1751
.
85.
Anower-E-Khuda
MF
,
Habuchi
H
,
Nagai
N
,
Habuchi
O
,
Yokochi
T
,
Kimata
K
.
Heparan sulfate 6-O-sulfotransferase isoform-dependent regulatory effects of heparin on the activities of various proteases in mast cells and the biosynthesis of 6-O-sulfated heparin
.
J Biol Chem
.
2013
;
288
(
6
):
3705
-
3717
.
86.
Habuchi
H
,
Nagai
N
,
Sugaya
N
,
Atsumi
F
,
Stevens
RL
,
Kimata
K
.
Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality
.
J Biol Chem
.
2007
;
282
(
21
):
15578
-
15588
.
87.
Benhamron
S
,
Reiner
I
,
Zcharia
E
, et al
.
Dissociation between mature phenotype and impaired transmigration in dendritic cells from heparanase-deficient mice
.
PLoS One
.
2012
;
7
(
5
):
e35602
.
88.
Poon
I K
,
Goodall
KJ
,
Phipps
S
, et al
.
Mice deficient in heparanase exhibit impaired dendritic cell migration and reduced airway inflammation
.
Eur J Immunol
.
2014
;
44
(
4
):
1016
-
1030
.
89.
Jackson
DG
,
Bell
JI
,
Dickinson
R
,
Timans
J
,
Shields
J
,
Whittle
N
.
Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon
.
J Cell Biol
.
1995
;
128
(
4
):
673
-
685
.
90.
Forsberg
EC
,
Prohaska
SS
,
Katzman
S
,
Heffner
GC
,
Stuart
JM
,
Weissman
IL
.
Differential expression of novel potential regulators in hematopoietic stem cells
.
PLoS Genet
.
2005
;
1
(
3
):
e28
.
91.
Termini
CM
,
Pang
A
,
Li
M
,
Fang
T
,
Chang
VY
,
Chute
JP
.
Syndecan-2 enriches for hematopoietic stem cells and regulates stem cell repopulating capacity
.
Blood
.
2022
;
139
(
2
):
188
-
204
.
92.
Murphy
AJ
,
Akhtari
M
,
Tolani
S
, et al
.
ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice
.
J Clin Invest
.
2011
;
121
(
10
):
4138
-
4149
.
93.
Minguell
JJ
,
Tavassoli
M
.
Proteoglycan synthesis by hematopoietic progenitor cells
.
Blood
.
1989
;
73
(
7
):
1821
-
1827
.
94.
Randrianarison-Huetz
V
,
Laurent
B
,
Bardet
V
,
Blobe
GC
,
Huetz
F
,
Duménil
D
.
Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-β signaling at the bipotent erythro-megakaryocytic progenitor stage
.
Blood
.
2010
;
115
(
14
):
2784
-
2795
.
95.
Baldwin
RJ
,
ten Dam
GB
,
van Kuppevelt
TH
, et al
.
A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation
.
Stem Cells
.
2008
;
26
(
12
):
3108
-
3118
.
96.
Holley
RJ
,
Pickford
CE
,
Rushton
G
, et al
.
Influencing hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides
.
J Biol Chem
.
2011
;
286
(
8
):
6241
-
6252
.
97.
Gupta
P
,
Oegema
TR
,
Brazil
JJ
,
Dudek
AZ
,
Slungaard
A
,
Verfaillie
CM
.
Human LTC-IC can be maintained for at least 5 weeks in vitro when interleukin-3 and a single chemokine are combined with O-sulfated heparan sulfates: requirement for optimal binding interactions of heparan sulfate with early-acting cytokines and matrix proteins
.
Blood
.
2000
;
95
(
1
):
147
-
155
.
98.
Piszczatowski
RT
,
Schwenger
E
,
Sundaravel
S
, et al
.
A glycan-based approach to cell characterization and isolation: hematopoiesis as a paradigm
.
J Exp Med
.
2022
;
219
(
11
):
e20212552
.
99.
Niemann
CU
,
Cowland
JB
,
Klausen
P
,
Askaa
J
,
Calafat
J
,
Borregaard
N
.
Localization of serglycin in human neutrophil granulocytes and their precursors
.
J Leukoc Biol
.
2004
;
76
(
2
):
406
-
415
.
100.
Niemann
CU
,
Abrink
M
,
Pejler
G
, et al
.
Neutrophil elastase depends on serglycin proteoglycan for localization in granules
.
Blood
.
2007
;
109
(
10
):
4478
-
4486
.
101.
Glenthøj
A
,
Cowland
JB
,
Heegaard
NH
,
Larsen
MT
,
Borregaard
N
.
Serglycin participates in retention of α-defensin in granules during myelopoiesis
.
Blood
.
2011
;
118
(
16
):
4440
-
4448
.
102.
Dunzendorfer
S
,
Kaneider
N
,
Rabensteiner
A
, et al
.
Cell-surface heparan sulfate proteoglycan–mediated regulation of human neutrophil migration by the serpin antithrombin III
.
Blood
.
2001
;
97
(
4
):
1079
-
1085
.
103.
Matzner
Y
,
Bar-Ner
M
,
Yahalom
J
,
Ishai-Michaeli
R
,
Fuks
Z
,
Vlodavsky
I
.
Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. possible role in invasion through basement membranes
.
J Clin Invest
.
1985
;
76
(
4
):
1306
-
1313
.
104.
MOLLINEDO
F
,
Nakajima
M
,
Llorens
A
, et al
.
Major co-localization of the extracellular-matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils
.
Biochem J
.
1997
;
327
(
3
):
917
-
923
.
105.
Glerup
S
,
Kløverpris
S
,
Oxvig
C
.
The proform of the eosinophil major basic protein binds the cell surface through a site distinct from its C-type lectin ligand-binding region
.
J Biol Chem
.
2006
;
281
(
42
):
31509
-
31516
.
106.
Swaminathan
GJ
,
Myszka
DG
,
Katsamba
PS
,
Ohnuki
LE
,
Gleich
GJ
,
Acharya
KR
.
Eosinophil-granule major basic protein, a C-type lectin, binds heparin
.
Biochemistry
.
2005
;
44
(
43
):
14152
-
14158
.
107.
Temkin
V
,
Aingorn
H
,
Puxeddu
I
, et al
.
Eosinophil major basic protein: first identified natural heparanase-inhibiting protein
.
J Allergy Clin Immunol
.
2004
;
113
(
4
):
703
-
709
.
108.
Jiang
A-P
,
Jiang
JF
,
Guo
MG
,
Jin
YM
,
Li
YY
,
Wang
JH
.
Human blood-circulating basophils capture HIV-1 and mediate viral trans-infection of CD4+ T cells
.
J Virol
.
2015
;
89
(
15
):
8050
-
8062
.
109.
Humphries
DE
,
Wong
GW
,
Friend
DS
, et al
.
Heparin is essential for the storage of specific granule proteases in mast cells
.
Nature
.
1999
;
400
(
6746
):
769
-
772
.
110.
Bashkin
P
,
Razin
E
,
Eldor
A
,
Vlodavsky
I
.
Degranulating mast cells secrete an endoglycosidase that degrades heparan sulfate in subendothelial extracellular matrix
.
Blood
.
1990
;
75
(
11
):
2204
-
2212
.
111.
Brule
S
,
Charnaux
N
,
Sutton
A
, et al
.
The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9
.
Glycobiology
.
2006
;
16
(
6
):
488
-
501
.
112.
Slimani
H
,
Charnaux
N
,
Mbemba
E
, et al
.
Interaction of RANTES with syndecan-1 and syndecan-4 expressed by human primary macrophages
.
Biochim Biophys Acta
.
2003
;
1617
(
1-2
):
80
-
88
.
113.
Clasper
S
,
Vekemans
S
,
Fiore
M
, et al
.
Inducible expression of the cell surface heparan sulfate proteoglycan syndecan-2 (fibroglycan) on human activated macrophages can regulate fibroblast growth factor action
.
J Biol Chem
.
1999
;
274
(
34
):
24113
-
24123
.
114.
Zernichow
L
,
Åbrink
M
,
Hallgren
J
,
Grujic
M
,
Pejler
G
,
Kolset
SO
.
Serglycin is the major secreted proteoglycan in macrophages and has a role in the regulation of macrophage tumor necrosis factor-α secretion in response to lipopolysaccharide
.
J Biol Chem
.
2006
;
281
(
37
):
26792
-
26801
.
115.
Martinez
P
,
Denys
A
,
Delos
M
, et al
.
Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans
.
Glycobiology
.
2015
;
25
(
5
):
502
-
513
.
116.
Jones
M
,
Tussey
L
,
Athanasou
N
,
Jackson
DG
.
Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action
.
J Biol Chem
.
2000
;
275
(
11
):
7964
-
7974
.
117.
Gordts
PL
,
Foley
EM
,
Lawrence
R
, et al
.
Reducing macrophage proteoglycan sulfation increases atherosclerosis and obesity through enhanced type I interferon signaling
.
Cell Metab
.
2014
;
20
(
5
):
813
-
826
.
118.
Drzeniek
Z
,
Stöcker
G
,
Siebertz
B
, et al
.
Heparan sulfate proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells
.
Blood
.
1999
;
93
(
9
):
2884
-
2897
.
119.
Gao
X
,
Lee
HY
,
da Rocha
EL
, et al
.
TGF-β inhibitors stimulate red blood cell production by enhancing self-renewal of BFU-E erythroid progenitors
.
Blood
.
2016
;
128
(
23
):
2637
-
2641
.
120.
Kobayashi
K
,
Kato
K
,
Sugi
T
, et al
.
Plasmodium falciparum BAEBL binds to heparan sulfate proteoglycans on the human erythrocyte surface
.
J Biol Chem
.
2010
;
285
(
3
):
1716
-
1725
.
121.
Vogt
AM
,
Winter
G
,
Wahlgren
M
,
Spillmann
D
.
Heparan sulphate identified on human erythrocytes: a Plasmodium falciparum receptor
.
Biochem J
.
2004
;
381
(
Pt 3
):
593
-
597
.
122.
Schick
BP
,
Jacoby
JA
.
Serglycin and betaglycan proteoglycans are expressed in the megakaryocytic cell line CHRF 288-11 and normal human megakaryocytes
.
J Cell Physiol
.
1995
;
165
(
1
):
96
-
106
.
123.
Lord
MS
,
Cheng
B
,
Farrugia
BL
,
McCarthy
S
,
Whitelock
JM
.
Platelet factor 4 binds to vascular proteoglycans and controls both growth factor activities and platelet activation
.
J Biol Chem
.
2017
;
292
(
10
):
4054
-
4063
.
124.
Kaneider
NC
,
Feistritzer
C
,
Gritti
D
, et al
.
Expression and function of syndecan-4 in human platelets
.
Thromb Haemost
.
2005
(
6
):
1120
-
1127
.
125.
Wan
LM
,
Zhang
SK
,
Li
SB
, et al
.
Heparanase facilitates PMA-induced megakaryocytic differentiation in K562 cells via interleukin 6/STAT3 pathway
.
Thromb Haemost
.
2020
;
120
(
4
):
647
-
657
.
126.
Tan
Y-X
,
Cui
H
,
Wan
LM
, et al
.
Overexpression of heparanase in mice promoted megakaryopoiesis
.
Glycobiology
.
2018
;
28
(
5
):
269
-
275
.
127.
Vögtle
T
,
Sharma
S
,
Mori
J
, et al
.
Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B
.
Elife
.
2019
;
8
:
e46840
.
128.
Falet
H
,
Rivadeneyra
L
,
Hoffmeister
KM
.
Clinical impact of glycans in platelet and megakaryocyte biology
.
Blood
.
2022
;
139
(
22
):
3255
-
3263
.
129.
Eustes
AS
,
Campbell
RA
,
Middleton
EA
, et al
.
Heparanase expression and activity are increased in platelets during clinical sepsis
.
J Thromb Haemost
.
2021
;
19
(
5
):
1319
-
1330
.
130.
Sanderson
RD
,
Lalor
P
,
Bernfield
M
.
B lymphocytes express and lose syndecan at specific stages of differentiation
.
Cell Regul
.
1989
;
1
:
27
-
35
.
131.
van der Voort
R
,
Keehnen
RM
,
Beuling
EA
,
Spaargaren
M
,
Pals
ST
.
Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans
.
J Exp Med
.
2000
;
192
(
8
):
1115
-
1124
.
132.
Borghesi
LA
,
Yamashita
Y
,
Kincade
PW
.
Heparan sulfate proteoglycans mediate interleukin-7–dependent B lymphopoiesis
.
Blood
.
1999
;
93
(
1
):
140
-
148
.
133.
Reijmers
RM
,
Spaargaren
M
,
Pals
ST
.
Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma
.
FEBS J
.
2013
;
280
(
10
):
2180
-
2193
.
134.
Bret
C
,
Hose
D
,
Reme
T
, et al
.
Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells
.
Br J Haematol
.
2009
;
145
(
3
):
350
-
368
.
135.
Jarousse
N
,
Trujillo
DL
,
Wilcox-Adelman
S
,
Coscoy
L
.
Virally-induced upregulation of heparan sulfate on B cells via the action of type I IFN
.
J Immunol
.
2011
;
187
(
11
):
5540
-
5547
.
136.
Aleman-Muench
GR
,
Mendoza
V
,
Stenvers
K
, et al
.
Betaglycan (TβRIII) is expressed in the thymus and regulates T cell development by protecting thymocytes from apoptosis
.
PLoS One
.
2012
;
7
:
e44217
.
137.
Ortega-Francisco
S
,
de la Fuente-Granada
M
,
Alvarez Salazar
EK
, et al
.
TβRIII is induced by TCR signaling and downregulated in FoxP3+ regulatory T cells
.
Biochem Biophys Res Commun
.
2017
;
494
(
1-2
):
82
-
87
.
138.
Khan
AA
,
Bose
C
,
Yam
LS
,
Soloski
MJ
,
Rupp
F
.
Physiological regulation of the immunological synapse by agrin
.
Science
.
2001
;
292
(
5522
):
1681
-
1686
.
139.
Zhang
J
,
Wang
Y
,
Chu
Y
, et al
.
Agrin is involved in lymphocytes activation that is mediated by α-dystroglycan
.
FASEB J
.
2006
;
20
(
1
):
50
-
58
.
140.
Forster-Horváth
C
,
Bocsi
J
,
Rásó
E
, et al
.
Constitutive intracellular expression and activation-induced cell surface up-regulation of CD44v3 in human T lymphocytes
.
Eur J Immunol
.
2001
;
31
(
2
):
600
-
608
.
141.
Chung
J-S
,
Dougherty
I
,
Cruz
PD
,
Ariizumi
K
.
Syndecan-4 mediates the coinhibitory function of DC-HIL on T cell activation
.
J Immunol
.
2007
;
179
(
9
):
5778
-
5784
.
142.
Sutton
VR
,
Brennan
AJ
,
Ellis
S
, et al
.
Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity
.
FEBS J
.
2016
;
283
(
5
):
947
-
961
.
143.
Hsu
H-P
,
Chen
YT
,
Chen
YY
, et al
.
Heparan sulfate is essential for thymus growth
.
J Biol Chem
.
2021
;
296
:
100419
.
144.
Wrenshall
LE
,
Platt
JL
.
Regulation of T cell homeostasis by heparan sulfate-bound IL-2
.
J Immunol
.
1999
;
163
(
7
):
3793
-
3800
.
145.
Wrenshall
LE
,
Platt
JL
,
Stevens
ET
,
Wight
TN
,
Miller
JD
.
Propagation and control of T cell responses by heparan sulfate-bound IL-2
.
J Immunol
.
2003
;
170
(
11
):
5470
-
5474
.
146.
Martinez
HA
,
Koliesnik
I
,
Kaber
G
, et al
.
FOXP3+ regulatory T cells use heparanase to access IL-2 bound to ECM in inflamed tissues
.
bioRxiv
.
Preprint published online 27 February 2023
.
147.
Naparstek
Y
,
Cohen
IR
,
Fuks
Z
,
Vlodavsky
I
.
Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase
.
Nature
.
1984
;
310
(
5974
):
241
-
244
.
148.
de Parseval
A
,
Bobardt
MD
,
Chatterji
A
, et al
.
A highly conserved arginine in gp120 governs HIV-1 binding to both syndecans and CCR5 via sulfated motifs
.
J Biol Chem
.
2005
;
280
(
47
):
39493
-
39504
.
149.
Clausen
TM
,
Sandoval
DR
,
Spliid
CB
, et al
.
SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2
.
Cell
.
2020
;
183
(
4
):
1043
-
1057.e15
.
150.
Jones
KS
,
Petrow-Sadowski
C
,
Bertolette
DC
,
Huang
Y
,
Ruscetti
FW
.
Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells
.
J Virol
.
2005
;
79
(
20
):
12692
-
12702
.
151.
Rusnati
M
,
Coltrini
D
,
Oreste
P
, et al
.
Interaction of HIV-1 Tat protein with heparin: role of the backbone structure, sulfation, and size
.
J Biol Chem
.
1997
;
272
(
17
):
11313
-
11320
.
152.
Shen
X-R
,
Geng
R
,
Li
Q
, et al
.
ACE2-independent infection of T lymphocytes by SARS-CoV-2
.
Signal Transduct Target Ther
.
2022
;
7
:
83
.
153.
Hecht
M-L
,
Rosental
B
,
Horlacher
T
, et al
.
Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences
.
J Proteome Res
.
2009
;
8
(
2
):
712
-
720
.
154.
Zilka
A
,
Landau
G
,
Hershkovitz
O
, et al
.
Characterization of the heparin/heparan sulfate binding site of the natural cytotoxicity receptor NKp46
.
Biochemistry
.
2005
;
44
:
14477
-
14485
.
155.
Brusilovsky
M
,
Radinsky
O
,
Cohen
L
, et al
.
Regulation of natural cytotoxicity receptors by heparan sulfate proteoglycans in-cis: a lesson from NKp44
.
Eur J Immunol
.
2015
;
45
(
4
):
1180
-
1191
.
156.
Elkin
M
.
Role of heparanase in macrophage activation
.
Adv Exp Med Biol
.
2020
;
1221
:
445
-
460
.
157.
Ishai-Michaeli
R
,
Eldor
A
,
Vlodavsky
I
.
Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix
.
Cell Regul
.
1990
;
1
(
11
):
833
-
842
.
158.
Matzner
Y
,
Vlodavsky
I
,
Bar-Ner
M
,
Ishai-Michaeli
R
,
Tauber
A I
.
Subcellular localization of heparanase in human neutrophils
.
J Leukoc Biol
.
1992
;
51
(
6
):
519
-
524
.
159.
Vlodavsky
I
,
Eldor
A
,
Haimovitz-Friedman
A
, et al
.
Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation
.
Invasion Metastasis
.
1992
;
12
(
2
):
112
-
127
.
160.
Gutter-Kapon
L
,
Alishekevitz
D
,
Shaked
Y
, et al
.
Heparanase is required for activation and function of macrophages
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
48
):
E7808
-
E7817
.
161.
Putz
EM
,
Mayfosh
AJ
,
Kos
K
, et al
.
NK cell heparanase controls tumor invasion and immune surveillance
.
J Clin Invest
.
2017
;
127
(
7
):
2777
-
2788
.
162.
Saez
B
,
Ferraro
F
,
Yusuf
RZ
, et al
.
Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning
.
Blood
.
2014
;
124
(
19
):
2937
-
2947
.
163.
Dennissen
MA
,
Jenniskens
GJ
,
Pieffers
M
, et al
.
Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies
.
J Biol Chem
.
2002
;
277
(
13
):
10982
-
10986
.
164.
van Kuppevelt
TH
,
Dennissen
MA
,
van Venrooij
WJ
,
Hoet
RM
,
Veerkamp
JH
.
Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology: further evidence for heparan sulfate heterogeneity in the kidney
.
J Biol Chem
.
1998
;
273
(
21
):
12960
-
12966
.
165.
Attreed
M
,
Desbois
M
,
Van Kuppevelt
TH
,
Bülow
HE
.
Direct visualization of specifically modified extracellular glycans in living animals
.
Nat Methods
.
2012
;
9
(
5
):
477
-
479
.
You do not currently have access to this content.
Sign in via your Institution