• Cryo-EM structure of the type I antiphospholipid antibody POmAb bound to the region R90-Y93 of kringle-1 of prothrombin is described.

  • By forcing prothrombin to open, type I antibodies prolong the clotting time with a new mechanism of action, acting as an anticoagulant.

Abstract

Antiprothrombin antibodies are found in antiphospholipid patients, but how they interact with prothrombin remains elusive. Prothrombin adopts closed and open forms. We recently discovered type I and type II antibodies and proposed that type I recognizes the open form. In this study, we report the discovery and structural and functional characterization in human plasma of a type I antibody, POmAb (prothrombin open monoclonal antibody). Using surface plasmon resonance and single-molecule spectroscopy, we show that POmAb interacts with kringle-1 of prothrombin, shifting the equilibrium toward the open form. Using single-particle cryogenic electron microscopy (cryo-EM), we establish that the epitope targeted by POmAb is in kringle-1, comprising an extended binding interface centered at residues R90-Y93. The 3.2-Å cryo-EM structure of the complex reveals that the epitope overlaps with the position occupied by the protease domain of prothrombin in the closed state, explaining the exclusive binding of POmAb to the open form. In human plasma, POmAb prolongs phospholipid-initiated and diluted Russell’s viper venom clotting time, which could be partly rescued by excess phospholipids, indicating POmAb is an anticoagulant but exerts a weak lupus anticoagulant effect. These studies reveal the structural basis of prothrombin recognition by a type I antiphospholipid antibody and uncover an exciting new strategy to achieve anticoagulation in human plasma.

1.
Garcia
D
,
Erkan
D
.
Diagnosis and management of the antiphospholipid syndrome
.
N Engl J Med
.
2018
;
378
(
21
):
2010
-
2021
.
2.
Schreiber
K
,
Sciascia
S
,
de Groot
PG
, et al
.
Antiphospholipid syndrome
.
Nat Rev Dis Primers
.
2018
;
4
:
17103
.
3.
Knight
JS
,
Branch
DW
,
Ortel
TL
.
Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management
.
BMJ
.
2023
;
380
:
e069717
.
4.
Galli
M
,
Barbui
T
.
Prothrombin as cofactor for antiphospholipids
.
Lupus
.
1998
;
7
(
suppl 2
):
S37
-
S40
.
5.
Bertolaccini
ML
.
Antibodies to prothrombin
.
Lupus
.
2012
;
21
(
7
):
729
-
731
.
6.
Fleck
RA
,
Rapaport
SI
,
Rao
LV
.
Anti-prothrombin antibodies and the lupus anticoagulant
.
Blood
.
1988
;
72
(
2
):
512
-
519
.
7.
Chaturvedi
S
,
McCrae
KR
.
Diagnosis and management of the antiphospholipid syndrome
.
Blood Rev
.
2017
;
31
(
6
):
406
-
417
.
8.
Di Cera
E
.
Thrombin
.
Mol Aspects Med
.
2008
;
29
(
4
):
203
-
254
.
9.
Krishnaswamy
S
.
The transition of prothrombin to thrombin
.
J Thromb Haemost
.
2013
;
11
(
suppl 1
):
265
-
276
.
10.
Amengual
O
,
Atsumi
T
,
Koike
T
.
Specificities, properties, and clinical significance of antiprothrombin antibodies
.
Arthritis Rheum
.
2003
;
48
(
4
):
886
-
895
.
11.
Rao
LV
,
Hoang
AD
,
Rapaport
SI
.
Mechanism and effects of the binding of lupus anticoagulant IgG and prothrombin to surface phospholipid
.
Blood
.
1996
;
88
(
11
):
4173
-
4182
.
12.
Chinnaraj
M
,
Planer
W
,
Pozzi
N
.
Structure of coagulation factor II: molecular mechanism of thrombin generation and development of next-generation anticoagulants
.
Front Med (Lausanne)
.
2018
;
5
:
281
.
13.
Pozzi
N
,
Bystranowska
D
,
Zuo
X
,
Di Cera
E
.
Structural architecture of prothrombin in solution revealed by single molecule spectroscopy
.
J Biol Chem
.
2016
;
291
(
35
):
18107
-
18116
.
14.
Chinnaraj
M
,
Planer
W
,
Pengo
V
,
Pozzi
N
.
Discovery and characterization of 2 novel subpopulations of aPS/PT antibodies in patients at high risk of thrombosis
.
Blood Adv
.
2019
;
3
(
11
):
1738
-
1749
.
15.
Chinnaraj
M
,
Chen
Z
,
Pelc
LA
, et al
.
Structure of prothrombin in the closed form reveals new details on the mechanism of activation
.
Sci Rep
.
2018
;
8
(
1
):
2945
.
16.
Chinnaraj
M
,
Pengo
V
,
Pozzi
N
.
A novel ELISA assay for the detection of anti-prothrombin antibodies in antiphospholipid syndrome patients at high risk of thrombosis
.
Front Immunol
.
2021
;
12
:
741589
.
17.
Kumar
S
,
Chinnaraj
M
,
Planer
W
, et al
.
An allosteric redox switch in domain V of beta(2)-glycoprotein I controls membrane binding and anti-domain I autoantibody recognition
.
J Biol Chem
.
2021
;
297
(
2
):
100890
.
18.
Punjani
A
,
Rubinstein
JL
,
Fleet
DJ
,
Brubaker
MA
.
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
.
Nat Methods
.
2017
;
14
(
3
):
290
-
296
.
19.
Pozzi
N
,
Chen
Z
,
Di Cera
E
.
How the linker connecting the two kringles influences activation and conformational plasticity of prothrombin
.
J Biol Chem
.
2016
;
291
(
12
):
6071
-
6082
.
20.
Kumar
S
,
Wulf
J
,
Basore
K
,
Pozzi
N
.
Structural analyses of beta(2)-glycoprotein I: is there a circular conformation?
.
J Thromb Haemost
.
2023
;
21
(
12
):
3511
-
3521
.
21.
de Groot
PG
,
Horbach
DA
,
Simmelink
MJ
,
van Oort
E
,
Derksen
RH
.
Anti-prothrombin antibodies and their relation with thrombosis and lupus anticoagulant
.
Lupus
.
1998
;
7
(
suppl 2
):
S32
-
S36
.
22.
Atsumi
T
,
Ieko
M
,
Bertolaccini
ML
, et al
.
Association of autoantibodies against the phosphatidylserine-prothrombin complex with manifestations of the antiphospholipid syndrome and with the presence of lupus anticoagulant
.
Arthritis Rheum
.
2000
;
43
(
9
):
1982
-
1993
.
23.
Pontara
E
,
Bison
E
,
Cattini
MG
,
Tonello
M
,
Denas
G
,
Pengo
V
.
Close link between antiphosphatidylserine/prothrombin antibodies, lupus anticoagulant, and activated protein C resistance in tetra antiphospholipid antibody-positive subjects
.
J Thromb Haemost
.
2023
;
21
(
11
):
3138
-
3144
.
24.
Simmelink
MJ
,
Horbach
DA
,
Derksen
RH
, et al
.
Complexes of anti-prothrombin antibodies and prothrombin cause lupus anticoagulant activity by competing with the binding of clotting factors for catalytic phospholipid surfaces
.
Br J Haematol
.
2001
;
113
(
3
):
621
-
629
.
25.
Noordermeer
T
,
Molhoek
JE
,
Schutgens
REG
, et al
.
Anti-beta2-glycoprotein I and anti-prothrombin antibodies cause lupus anticoagulant through different mechanisms of action
.
J Thromb Haemost
.
2021
;
19
(
4
):
1018
-
1028
.
26.
Field
SL
,
Chesterman
CN
,
Dai
YP
,
Hogg
PJ
.
Lupus antibody bivalency is required to enhance prothrombin binding to phospholipid
.
J Immunol
.
2001
;
166
(
10
):
6118
-
6125
.
27.
Ruben
EA
,
Summers
B
,
Rau
MJ
,
Fitzpatrick
JAJ
,
Di Cera
E
.
Cryo-EM structure of the prothrombin-prothrombinase complex
.
Blood
.
2022
;
139
(
24
):
3463
-
3473
.
You do not currently have access to this content.
Sign in via your Institution