• Conformationally insensitive nanobodies activate VWF binding of platelets by disrupting its NAIM.

  • Conformationally sensitive nanobodies inhibit VWF binding of platelets by stabilizing the AIM conformation that masks the GPIbα-binding site.

Abstract

Activation of von Willebrand factor (VWF) is a tightly controlled process governed primarily by local elements around its A1 domain. Recent studies suggest that the O-glycosylated sequences flanking the A1 domain constitute a discontinuous and force-sensitive autoinhibitory module (AIM), although its extent and conformation remains controversial. Here, we used a targeted screening strategy to identify 2 groups of nanobodies. One group, represented by clone 6D12, is conformation insensitive and binds the N-terminal AIM (NAIM) sequence that is distal from A1; 6D12 activates human VWF and induces aggregation of platelet-rich plasma at submicromolar concentrations. The other group, represented by clones Nd4 and Nd6, is conformation sensitive and targets the C-terminal AIM (CAIM). Nd4 and Nd6 inhibit ristocetin-induced platelet aggregation and reduce VWF-mediated platelet adhesion under flow. A crystal structure of Nd6 in complex with AIM-A1 shows a novel conformation of both CAIM and NAIM that are primed to interact, providing a model of steric hindrance stabilized by the AIM as the mechanism for regulating GPIbα binding to VWF. Hydrogen-deuterium exchange mass spectrometry analysis shows that binding of 6D12 induces the exposure of the GPIbα-binding site in the A1 domain, but binding of inhibitory nanobodies reduces it. Overall, these results suggest that the distal portion of NAIM is involved in specific interactions with CAIM, and binding of nanobodies to the AIM could either disrupt its conformation to activate VWF or stabilize its conformation to upkeep VWF autoinhibition. These reported nanobodies could facilitate future studies of VWF functions and related pathologies.

1.
Sadler
JE
.
Biochemistry and genetics of von Willebrand factor
.
Annu Rev Biochem
.
1998
;
67
:
395
-
424
.
2.
Springer
TA
.
von Willebrand factor, Jedi knight of the bloodstream
.
Blood
.
2014
;
124
(
9
):
1412
-
1425
.
3.
Parker
ET
,
Lollar
P
.
Conformation of the von Willebrand factor/factor VIII complex in quasi-static flow
.
J Biol Chem
.
2021
;
296
:
100420
.
4.
Bergal
HT
,
Jiang
Y
,
Yang
D
,
Springer
TA
,
Wong
WP
.
Conformation of von Willebrand factor in shear flow revealed with stroboscopic single-molecule imaging
.
Blood
.
2022
;
140
(
23
):
2490
-
2499
.
5.
Fu
H
,
Jiang
Y
,
Yang
D
,
Scheiflinger
F
,
Wong
WP
,
Springer
TA
.
Flow-induced elongation of von Willebrand factor precedes tension-dependent activation
.
Nat Commun
.
2017
;
8
(
1
):
324
.
6.
Auton
M
,
Cruz
MA
,
Moake
J
.
Conformational stability and domain unfolding of the von Willebrand factor A domains
.
J Mol Biol
.
2007
;
366
(
3
):
986
-
1000
.
7.
Badirou
I
,
Kurdi
M
,
Legendre
P
, et al
.
In vivo analysis of the role of O-glycosylations of von Willebrand factor
.
PLoS One
.
2012
;
7
(
5
):
e37508
.
8.
Auton
M
,
Sowa
KE
,
Behymer
M
,
Cruz
MA
.
N-terminal flanking region of A1 domain in von Willebrand factor stabilizes structure of A1A2A3 complex and modulates platelet activation under shear stress
.
J Biol Chem
.
2012
;
287
(
18
):
14579
-
14585
.
9.
Nowak
AA
,
Canis
K
,
Riddell
A
,
Laffan
MA
,
McKinnon
TA
.
O-linked glycosylation of von Willebrand factor modulates the interaction with platelet receptor glycoprotein Ib under static and shear stress conditions
.
Blood
.
2012
;
120
(
1
):
214
-
222
.
10.
Tischer
A
,
Cruz
MA
,
Auton
M
.
The linker between the D3 and A1 domains of vWF suppresses A1-GPIbalpha catch bonds by site-specific binding to the A1 domain
.
Protein Sci
.
2013
;
22
(
8
):
1049
-
1059
.
11.
Madabhushi
SR
,
Zhang
C
,
Kelkar
A
,
Dayananda
KM
,
Neelamegham
S
.
Platelet GpIba binding to von Willebrand Factor under fluid shear:contributions of the D'D3-domain, A1-domain flanking peptide and O-linked glycans
.
J Am Heart Assoc
.
2014
;
3
(
5
):
e001420
.
12.
Zhang
C
,
Kelkar
A
,
Nasirikenari
M
, et al
.
The physical spacing between the von Willebrand factor D'D3 and A1 domains regulates platelet adhesion in vitro and in vivo
.
J Thromb Haemost
.
2018
;
16
(
3
):
571
-
582
.
13.
Yago
T
,
Lou
J
,
Wu
T
, et al
.
Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF
.
J Clin Invest
.
2008
;
118
(
9
):
3195
-
3207
.
14.
Kim
J
,
Zhang
CZ
,
Zhang
X
,
Springer
TA
.
A mechanically stabilized receptor-ligand flex-bond important in the vasculature
.
Nature
.
2010
;
466
(
7309
):
992
-
995
.
15.
Zhao
YC
,
Wang
HQ
,
Wang
Y
,
Lou
JZ
,
Ju
LA
.
The N-terminal autoinhibitory module of the A1 domain in von Willebrand factor stabilizes the mechanosensor catch bond
.
RSC Chem Biol
.
2022
;
3
(
6
):
707
-
720
.
16.
Deng
W
,
Wang
Y
,
Druzak
SA
, et al
.
A discontinuous autoinhibitory module masks the A1 domain of von Willebrand factor
.
J Thromb Haemost
.
2017
;
15
(
9
):
1867
-
1877
.
17.
Deng
W
,
Voos
KM
,
Colucci
JK
, et al
.
Delimiting the autoinhibitory module of von Willebrand factor
.
J Thromb Haemost
.
2018
;
16
(
10
):
2097
-
2105
.
18.
Arce
NA
,
Cao
W
,
Brown
AK
, et al
.
Activation of von Willebrand factor via mechanical unfolding of its discontinuous autoinhibitory module
.
Nat Commun
.
2021
;
12
(
1
):
2360
.
19.
Wiita
AP
,
Ainavarapu
SR
,
Huang
HH
,
Fernandez
JM
.
Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
19
):
7222
-
7227
.
20.
Voos
KM
,
Cao
W
,
Arce
NA
, et al
.
Desialylation of O-glycans activates von Willebrand factor by destabilizing its autoinhibitory module
.
J Thromb Haemost
.
2022
;
20
(
1
):
196
-
207
.
21.
Legan
ER
,
Liu
Y
,
Arce
NA
, et al
.
Type 2B von Willebrand disease mutations differentially perturb autoinhibition of the A1 domain
.
Blood
.
2023
;
141
(
10
):
1221
-
1232
.
22.
Tischer
A
,
Machha
VR
,
Moon-Tasson
L
,
Benson
LM
,
Auton
M
.
Glycosylation sterically inhibits platelet adhesion to von Willebrand factor without altering intrinsic conformational dynamics
.
J Thromb Haemost
.
2020
;
18
(
1
):
79
-
90
.
23.
Bonazza
K
,
Iacob
RE
,
Hudson
NE
, et al
.
von Willebrand factor A1 domain stability and affinity for GPIbalpha are differentially regulated by its O-glycosylated N- and C-linker
.
Elife
.
2022
;
11
:
e75760
.
24.
Canis
K
,
McKinnon
TA
,
Nowak
A
, et al
.
The plasma von Willebrand factor O-glycome comprises a surprising variety of structures including ABH antigens and disialosyl motifs
.
J Thromb Haemost
.
2010
;
8
(
1
):
137
-
145
.
25.
Solecka
BA
,
Weise
C
,
Laffan
MA
,
Kannicht
C
.
Site-specific analysis of von Willebrand factor O-glycosylation
.
J Thromb Haemost
.
2016
;
14
(
4
):
733
-
746
.
26.
Huang
RH
,
Fremont
DH
,
Diener
JL
,
Schaub
RG
,
Sadler
JE
.
A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1
.
Structure
.
2009
;
17
(
11
):
1476
-
1484
.
27.
De Luca
M
,
Facey
DA
,
Favaloro
EJ
, et al
.
Structure and function of the von Willebrand factor A1 domain: analysis with monoclonal antibodies reveals distinct binding sites involved in recognition of the platelet membrane glycoprotein Ib-IX-V complex and ristocetin-dependent activation
.
Blood
.
2000
;
95
(
1
):
164
-
172
.
28.
Arce
NA
,
Liu
Y
,
Chen
W
,
Zhang
XF
,
Li
R
.
Autoinhibitory module underlies species difference in shear activation of von Willebrand factor
.
J Thromb Haemost
.
2022
;
20
(
11
):
2686
-
2696
.
29.
Emsley
J
,
Cruz
M
,
Handin
R
,
Liddington
R
.
Crystal structure of the von Willebrand factor A1 domain and implications for the binding of platelet glycoprotein Ib
.
J Biol Chem
.
1998
;
273
(
17
):
10396
-
10401
.
30.
McCoy
AJ
,
Grosse-Kunstleve
RW
,
Adams
PD
,
Winn
MD
,
Storoni
LC
,
Read
RJ
.
Phaser crystallographic software
.
J Appl Crystallogr
.
2007
;
40
(
pt 4
):
658
-
674
.
31.
Huizinga
EG
,
Tsuji
S
,
Romijn
RA
, et al
.
Structures of glycoprotein Iba and its complex with von Willebrand factor A1 domain
.
Science
.
2002
;
297
(
5584
):
1176
-
1179
.
32.
Dumas
JJ
,
Kumar
R
,
McDonagh
T
, et al
.
Crystal structure of the wild-type von Willebrand factor A1-glycoprotein Iba complex reveals conformation differences with a complex bearing von Willebrand disease mutations
.
J Biol Chem
.
2004
;
279
(
22
):
23327
-
23334
.
33.
Blenner
MA
,
Dong
X
,
Springer
TA
.
Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib
.
J Biol Chem
.
2014
;
289
(
9
):
5565
-
5579
.
34.
Celikel
R
,
Varughese
KI
,
Madhusudan
,
Yoshioka
A
,
Ware
J
,
Ruggeri
ZM
.
Crystal structure of the von Willebrand factor A1 domain in complex with the function blocking NMC-4 Fab
.
Nat Struct Biol
.
1998
;
5
(
3
):
189
-
194
.
35.
Fukuda
K
,
Doggett
TA
,
Bankston
LA
,
Cruz
MA
,
Diacovo
TG
,
Liddington
RC
.
Structural basis of von Willebrand factor activation by the snake toxin botrocetin
.
Structure
.
2002
;
10
(
7
):
943
-
950
.
36.
Maita
N
,
Nishio
K
,
Nishimoto
E
, et al
.
Crystal structure of von Willebrand factor A1 domain complexed with snake venom, bitiscetin: insight into glycoprotein Ibalpha binding mechanism induced by snake venom proteins
.
J Biol Chem
.
2003
;
278
(
39
):
37777
-
37781
.
37.
Fukuda
K
,
Doggett
T
,
Laurenzi
IJ
,
Liddington
RC
,
Diacovo
TG
.
The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation
.
Nat Struct Mol Biol
.
2005
;
12
(
2
):
152
-
159
.
38.
Tischer
A
,
Campbell
JC
,
Machha
VR
, et al
.
Mutational constraints on local unfolding inhibit the rheological adaptation of von Willebrand factor
.
J Biol Chem
.
2016
;
291
(
8
):
3848
-
3859
.
39.
Zhu
S
,
Gilbert
JC
,
Hatala
P
, et al
.
The development and characterization of a long acting anti-thrombotic von Willebrand factor (VWF) aptamer
.
J Thromb Haemost
.
2020
;
18
(
5
):
1113
-
1123
.
40.
Celikel
R
,
Ruggeri
ZM
,
Varughese
KI
.
von Willebrand factor conformation and adhesive function is modulated by an internalized water molecule
.
Nat Struct Biol
.
2000
;
7
(
10
):
881
-
884
.
41.
Lee
HT
,
Park
UB
,
Jeong
TJ
, et al
.
High-resolution structure of the vWF A1 domain in complex with caplacizumab, the first nanobody-based medicine for treating acquired TTP
.
Biochem Biophys Res Commun
.
2021
;
567
:
49
-
55
.
42.
Grainick
HR
,
Williams
SB
,
Coller
BS
.
Asialo von Willebrand factor interactions with platelets. Interdependence of glycoproteins Ib and IIb/IIIa for binding and aggregation
.
J Clin Invest
.
1985
;
75
(
1
):
19
-
25
.
43.
Anderson
JR
,
Li
J
,
Springer
TA
,
Brown
A
.
Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange
.
Blood
.
2022
;
140
(
12
):
1419
-
1430
.
44.
Javitt
G
,
Yeshaya
N
,
Khmelnitsky
L
,
Fass
D
.
Assembly of von Willebrand factor tubules with in vivo helical parameters requires A1 domain insertion
.
Blood
.
2022
;
140
(
26
):
2835
-
2843
.
45.
Kim
J
,
Hudson
NE
,
Springer
TA
.
Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
15
):
4648
-
4653
.
46.
Scott
JP
,
Montgomery
RR
,
Retzinger
GS
.
Dimeric ristocetin flocculates proteins, binds to platelets, and mediates von Willebrand factor-dependent agglutination of platelets
.
J Biol Chem
.
1991
;
266
(
13
):
8149
-
8155
.
47.
Hulstein
JJ
,
de Groot
PG
,
Silence
K
,
Veyradier
A
,
Fijnheer
R
,
Lenting
PJ
.
A novel nanobody that detects the gain-of-function phenotype of von Willebrand factor in ADAMTS13 deficiency and von Willebrand disease type 2B
.
Blood
.
2005
;
106
(
9
):
3035
-
3042
.
48.
van der Vorm
LN
,
Li
L
,
Huskens
D
, et al
.
Analytical characterization and reference interval of an enzyme-linked immunosorbent assay for active von Willebrand factor
.
PLoS One
.
2019
;
14
(
2
):
e0211961
.
49.
Ayme
G
,
Adam
F
,
Legendre
P
, et al
.
A novel single-domain antibody against von Willebrand factor A1 domain resolves leukocyte recruitment and vascular leakage during inflammation-brief report
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
9
):
1736
-
1740
.
50.
Kizlik-Masson
C
,
Peyron
I
,
Gangnard
S
, et al
.
A nanobody against the von Willebrand factor A3-domain detects ADAMTS13-induced proteolysis in congenital & acquired VWD
.
Blood
.
2023
;
141
(
12
):
1457
-
1468
.
51.
de Maat
S
,
Clark
CC
,
Barendrecht
AD
, et al
.
Microlyse: a thrombolytic agent that targets VWF for clearance of microvascular thrombosis
.
Blood
.
2022
;
139
(
4
):
597
-
607
.
You do not currently have access to this content.
Sign in via your Institution