• UM171 mediates concomitant CoREST/MYC degradation, which requires CUL3KBTBD4 ubiquitin ligase activation.

  • Forced expression of MYC abolishes UM171-mediated HSC expansion and multilineage potential.

Abstract

Ex vivo expansion of hematopoietic stem cells (HSCs) is gaining importance for cell and gene therapy, and requires a shift from dormancy state to activation and cycling. However, abnormal or excessive HSC activation results in reduced self-renewal ability and increased propensity for myeloid-biased differentiation. We now report that activation of the E3 ligase complex CRL3KBTBD4 by UM171 not only induces epigenetic changes through CoREST1 degradation but also controls chromatin-bound master regulator of cell cycle entry and proliferative metabolism (MYC) levels to prevent excessive activation and maintain lympho-myeloid potential of expanded populations. Furthermore, reconstitution activity and multipotency of UM171-treated HSCs are specifically compromised when MYC levels are experimentally increased despite degradation of CoREST1.

1.
Saiyin
T
,
Kirkham
AM
,
Bailey
AJM
, et al
.
Clinical outcomes of umbilical cord blood transplantation using ex vivo expansion: a systematic review and meta-analysis of controlled studies
.
Transplant Cell Ther
.
2023
;
29
(
2
):
129.e1
-
129.e9
.
2.
Chagraoui
J
,
Girard
S
,
Spinella
JF
, et al
.
UM171 preserves epigenetic marks that are reduced in ex vivo culture of human HSCs via potentiation of the CLR3-KBTBD4 complex
.
Cell Stem Cell
.
2021
;
28
(
1
):
48
-
62.e6
.
3.
Chagraoui
J
,
Lehnertz
B
,
Girard
S
, et al
.
UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal
.
PLoS One
.
2019
;
14
(
11
):
e0224900
.
4.
Foudi
A
,
Hochedlinger
K
,
Van Buren
D
, et al
.
Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
.
Nat Biotechnol
.
2009
;
27
(
1
):
84
-
90
.
5.
Qiu
J
,
Papatsenko
D
,
Niu
X
,
Schaniel
C
,
Moore
K
.
Divisional history and hematopoietic stem cell function during homeostasis
.
Stem Cell Rep
.
2014
;
2
(
4
):
473
-
490
.
6.
Wilson
A
,
Laurenti
E
,
Oser
G
, et al
.
Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
.
Cell
.
2008
;
135
(
6
):
1118
-
1129
.
7.
Ito
K
,
Ito
K
.
Hematopoietic stem cell fate through metabolic control
.
Exp Hematol
.
2018
;
64
:
1
-
11
.
8.
Kasbekar
M
,
Mitchell
CA
,
Proven
MA
,
Passegue
E
.
Hematopoietic stem cells through the ages: a lifetime of adaptation to organismal demands
.
Cell Stem Cell
.
2023
;
30
(
11
):
1403
-
1420
.
9.
Morganti
C
,
Cabezas-Wallscheid
N
,
Ito
K
.
Metabolic regulation of hematopoietic stem cells
.
Hemasphere
.
2022
;
6
(
7
):
e740
.
10.
Nakamura-Ishizu
A
,
Ito
K
,
Suda
T
.
Hematopoietic stem cell metabolism during development and aging
.
Dev Cell
.
2020
;
54
(
2
):
239
-
255
.
11.
Luchsinger
LL
,
Strikoudis
A
,
Danzl
NM
, et al
.
Harnessing hematopoietic stem cell low intracellular calcium improves their maintenance in vitro
.
Cell Stem Cell
.
2019
;
25
(
2
):
225
-
240.e7
.
12.
Broxmeyer
HE
.
Hematopoietic stem cell intracellular levels of Ca(2+) to the rescue! What next?
.
Cell Stem Cell
.
2019
;
25
(
2
):
171
-
173
.
13.
Ho
TT
,
Warr
MR
,
Adelman
ER
, et al
.
Autophagy maintains the metabolism and function of young and old stem cells
.
Nature
.
2017
;
543
(
7644
):
205
-
210
.
14.
Chua
BA
,
Lennan
CJ
,
Sunshine
MJ
, et al
.
Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis
.
Cell Stem Cell
.
2023
;
30
(
4
):
460
-
472.e6
.
15.
Liang
R
,
Arif
T
,
Kalmykova
S
, et al
.
Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency
.
Cell Stem Cell
.
2020
;
26
(
3
):
359
-
376.e7
.
16.
Garcia-Prat
L
,
Kaufmann
KB
,
Schneiter
F
, et al
.
TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate
.
Cell Stem Cell
.
2021
;
28
(
10
):
1838
-
1850.e10
.
17.
Loeffler
D
,
Schneiter
F
,
Wang
W
, et al
.
Asymmetric organelle inheritance predicts human blood stem cell fate
.
Blood
.
2022
;
139
(
13
):
2011
-
2023
.
18.
Kaufmann
KB
,
Zeng
AGX
,
Coyaud
E
, et al
.
A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness
.
Nat Immunol
.
2021
;
22
(
6
):
723
-
734
.
19.
Wunderlich
M
,
Chou
FS
,
Sexton
C
, et al
.
Improved multilineage human hematopoietic reconstitution and function in NSGS mice
.
PLoS One
.
2018
;
13
(
12
):
e0209034
.
20.
van Galen
P
,
Mbong
N
,
Kreso
A
, et al
.
Integrated stress response activity marks stem cells in normal hematopoiesis and leukemia
.
Cell Rep
.
2018
;
25
(
5
):
1109
-
1117.e5
.
21.
Subramaniam
A
,
Zemaitis
K
,
Talkhoncheh
MS
, et al
.
Lysine-specific demethylase 1A restricts ex vivo propagation of human HSCs and is a target of UM171
.
Blood
.
2020
;
136
(
19
):
2151
-
2161
.
22.
Zemaitis
K
,
Ghosh
S
,
Hansson
J
,
Subramaniam
A
.
The stem cell-supporting small molecule UM171 triggers Cul3-KBTBD4-mediated degradation of ELM2 domain-harboring proteins
.
J Biol Chem
.
2023
;
299
(
5
):
104662
.
23.
Kim
HJ
,
Li
P
,
Kim
T
,
Oldfield
AJ
,
Zheng
X
,
Yang
P
.
Integrative analysis reveals histone demethylase LSD1 promotes RNA polymerase II pausing
.
iScience
.
2022
;
25
(
10
):
105049
.
24.
Ecker
J
,
Thatikonda
V
,
Sigismondo
G
, et al
.
Reduced chromatin binding of MYC is a key effect of HDAC inhibition in MYC amplified medulloblastoma
.
Neuro Oncol
.
2021
;
23
(
2
):
226
-
239
.
25.
Lan
H
,
Tan
M
,
Zhang
Q
, et al
.
LSD1 destabilizes FBXW7 and abrogates FBXW7 functions independent of its demethylase activity
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
25
):
12311
-
12320
.
26.
Qin
XK
,
Du
Y
,
Liu
XH
,
Wang
L
.
LSD1 promotes prostate cancer cell survival by destabilizing FBXW7 at post-translational level
.
Front Oncol
.
2020
;
10
:
616185
.
27.
Murphy
MJ
,
Wilson
A
,
Trumpp
A
.
More than just proliferation: Myc function in stem cells
.
Trends Cell Biol
.
2005
;
15
(
3
):
128
-
137
.
28.
Laurenti
E
,
Varnum-Finney
B
,
Wilson
A
, et al
.
Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity
.
Cell Stem Cell
.
2008
;
3
(
6
):
611
-
624
.
29.
Sheng
Y
,
Ma
R
,
Yu
C
, et al
.
Role of c-Myc haploinsufficiency in the maintenance of HSCs in mice
.
Blood
.
2021
;
137
(
5
):
610
-
623
.
30.
Lu
Y
,
Yang
L
,
Shen
M
, et al
.
Tespa1 facilitates hematopoietic and leukemic stem cell maintenance by restricting c-Myc degradation
.
Leukemia
.
2023
;
37
(
5
):
1039
-
1047
.
31.
Wilson
A
,
Murphy
MJ
,
Oskarsson
T
, et al
.
c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation
.
Genes Dev
.
2004
;
18
(
22
):
2747
-
2763
.
32.
Hidalgo San Jose
L
,
Sunshine
MJ
,
Dillingham
CH
, et al
.
Modest declines in proteome quality impair hematopoietic stem cell self-renewal
.
Cell Rep
.
2020
;
30
(
1
):
69
-
80.e6
.
33.
Kruta
M
,
Sunshine
MJ
,
Chua
BA
, et al
.
Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging
.
Cell Stem Cell
.
2021
;
28
(
11
):
1950
-
1965.e6
.
34.
Zhang
YW
,
Mess
J
,
Aizarani
N
, et al
.
Hyaluronic acid-GPRC5C signalling promotes dormancy in haematopoietic stem cells
.
Nat Cell Biol
.
2022
;
24
(
7
):
1038
-
1048
.
35.
Cabezas-Wallscheid
N
,
Buettner
F
,
Sommerkamp
P
, et al
.
Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy
.
Cell
.
2017
;
169
(
5
):
807
-
823.e19
.
36.
Menendez-Gutierrez
MP
,
Porcuna
J
,
Nayak
R
, et al
.
Retinoid X receptor promotes hematopoietic stem cell fitness and quiescence and preserves hematopoietic homeostasis
.
Blood
.
2023
;
141
(
6
):
592
-
608
.
37.
Keyvani Chahi
A
,
Belew
MS
,
Xu
J
, et al
.
PLAG1 dampens protein synthesis to promote human hematopoietic stem cell self-renewal
.
Blood
.
2022
;
140
(
9
):
992
-
1008
.
38.
Yanai
H
,
Beerman
I
.
Proliferation: driver of HSC aging phenotypes?
.
Mech Ageing Dev
.
2020
;
191
:
111331
.
39.
Filippi
MD
.
Hematopoietic stem cell (HSC) divisional memory: the journey of mitochondrial metabolism through HSC division
.
Exp Hematol
.
2021
;
96
:
27
-
34
.
40.
Bernitz
JM
,
Rapp
K
,
Daniel
MG
, et al
.
Memory of divisional history directs the continuous process of primitive hematopoietic lineage commitment
.
Stem Cell Rep
.
2020
;
14
(
4
):
561
-
574
.
41.
Che
JLC
,
Bode
D
,
Kucinski
I
, et al
.
Identification and characterization of in vitro expanded hematopoietic stem cells
.
EMBO Rep
.
2022
;
23
(
10
):
e55502
.
42.
Rundberg Nilsson
A
,
Soneji
S
,
Adolfsson
S
,
Bryder
D
,
Pronk
CJ
.
Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias
.
PLoS One
.
2016
;
11
(
7
):
e0158369
.
43.
Fares
I
,
Chagraoui
J
,
Gareau
Y
, et al
.
Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal
.
Science
.
2014
;
345
(
6203
):
1509
-
1512
.
44.
Dumont-Lagace
M
,
Li
Q
,
Tanguay
M
, et al
.
UM171-expanded cord blood transplants support robust T cell reconstitution with low rates of severe infections
.
Transplant Cell Ther
.
2021
;
27
(
1
):
76.e1
-
76.e9
.
45.
Wen
R
,
Dong
C
,
Xu
C
, et al
.
UM171 promotes expansion of autologous peripheral blood hematopoietic stem cells from poorly mobilizing lymphoma patients
.
Int Immunopharmacol
.
2020
;
81
:
106266
.
You do not currently have access to this content.
Sign in via your Institution