• A B-cell–like epigenetic and transcriptomic signature is enriched in patients with t(11;14) primary MM.

  • A loss of “B-cell–like” epigenetic signature with gain of canonical plasma cell transcription factors is observed at the time of resistance.

Abstract

The translocation t(11;14) occurs in 20% of patients with multiple myeloma (MM) and results in the upregulation of CCND1. Nearly two-thirds of t(11;14) MM cells are BCL2 primed and highly responsive to the oral BCL2 inhibitor venetoclax. Although it is evident that this unique sensitivity to venetoclax depends on the Bcl-2 homology domain 3– proapoptotic protein priming of BCL2, the biology underlying t(11;14) MM dependency on BCL2 is poorly defined. Importantly, the epigenetic regulation of t(11;14) transcriptomes and its impact on gene regulation and clinical response to venetoclax remain elusive. In this study, by integrating assay for transposase-accessible chromatin by sequencing (ATAC-seq) and RNA-seq at the single-cell level in primary MM samples, we have defined the epigenetic regulome and transcriptome associated with t(11;14) MM. A B-cell–like epigenetic signature was enriched in t(11;14) MM, confirming its phylogeny link to B-cell rather than plasma cell biology. Of note, a loss of a B-cell–like epigenetic signature with a gain of canonical plasma cell transcription factors was observed at the time of resistance to venetoclax. In addition, MCL1 and BCL2L1 copy number gains and structural rearrangements were linked to venetoclax resistance in patients with t(11;14) MM. To date, this is the first study in which both single-cell (sc) ATAC-seq and scRNA-seq analysis are integrated into primary MM cells to obtain a deeper resolution of the epigenetic regulome and transcriptome associated with t(11;14) MM biology and venetoclax resistance.

1.
Cardona-Benavides
IJ
,
de Ramón
C
,
Gutiérrez
NC
.
Genetic abnormalities in multiple myeloma: prognostic and therapeutic implications
.
Cells
.
2021
;
10
(
2
):
336
.
2.
Davis
LN
,
Sherbenou
DW
.
Emerging therapeutic strategies to overcome drug resistance in multiple myeloma
.
Cancers
.
2021
;
13
(
7
):
1686
.
3.
Bergsagel
PL
,
Kuehl
WM
.
Molecular pathogenesis and a consequent classification of multiple myeloma
.
J Clin Oncol
.
2005
;
23
(
26
):
6333
-
6338
.
4.
Walker
BA
,
Wardell
CP
,
Chiecchio
L
, et al
.
Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma
.
Blood
.
2011
;
117
(
2
):
553
-
562
.
5.
Paner
A
,
Patel
P
,
Dhakal
B
.
The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma
.
Blood Rev
.
2020
;
41
:
100643
.
6.
Garand
R
,
Avet-Loiseau
H
,
Accard
F
,
Moreau
P
,
Harousseau
JL
,
Bataille
R
.
t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma
.
Leukemia
.
2003
;
17
(
10
):
2032
-
2035
.
7.
Robillard
N
,
Avet-Loiseau
H
,
Garand
R
, et al
.
CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma
.
Blood
.
2003
;
102
(
3
):
1070
-
1071
.
8.
Singh
R
,
Letai
A
,
Sarosiek
K
.
Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
3
):
175
-
193
.
9.
Youle
RJ
,
Strasser
A
.
The BCL-2 protein family: opposing activities that mediate cell death
.
Nat Rev Mol Cell Biol
.
2008
;
9
(
1
):
47
-
59
.
10.
Souers
AJ
,
Leverson
JD
,
Boghaert
ER
, et al
.
ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets
.
Nat Med
.
2013
;
19
(
2
):
202
-
208
.
11.
Davids
MS
,
Roberts
AW
,
Seymour
JF
, et al
.
Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma
.
J Clin Oncol
.
2017
;
35
(
8
):
826
-
833
.
12.
Roberts
AW
,
Davids
MS
,
Pagel
JM
, et al
.
Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2016
;
374
(
4
):
311
-
322
.
13.
Boccon-Gibod
C
,
Talbot
A
,
Le Bras
F
, et al
.
Carfilzomib, venetoclax and dexamethasone for relapsed/refractory multiple myeloma
.
Br J Haematol
.
2020
;
189
(
3
):
e73
-
e76
.
14.
Kumar
S
,
Kaufman
JL
,
Gasparetto
C
, et al
.
Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma
.
Blood
.
2017
;
130
(
22
):
2401
-
2409
.
15.
Touzeau
C
,
Dousset
C
,
Le Gouill
S
, et al
.
The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma
.
Leukemia
.
2014
;
28
(
1
):
210
-
212
.
16.
Touzeau
C
,
Le Gouill
S
,
Mahé
B
, et al
.
Deep and sustained response after venetoclax therapy in a patient with very advanced refractory myeloma with translocation t(11;14)
.
Haematologica
.
2017
;
102
(
3
):
e112
-
e114
.
17.
Bahlis
NJ
,
Baz
R
,
Harrison
SJ
, et al
.
Phase I study of venetoclax plus daratumumab and dexamethasone, with or without bortezomib, in patients with relapsed or refractory multiple myeloma with and without t(11;14)
.
J Clin Oncol
.
2021
;
39
(
32
):
3602
-
3612
.
18.
Punnoose
EA
,
Leverson
JD
,
Peale
F
, et al
.
Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models
.
Mol Cancer Ther
.
2016
;
15
(
5
):
1132
-
1144
.
19.
Gupta
VA
,
Barwick
BG
,
Matulis
SM
, et al
.
Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression
.
Blood
.
2021
;
137
(
26
):
3604
-
3615
.
20.
Matulis
SM
,
Gupta
VA
,
Nooka
AK
, et al
.
Dexamethasone treatment promotes Bcl-2 dependence in multiple myeloma resulting in sensitivity to venetoclax
.
Leukemia
.
2016
;
30
(
5
):
1086
-
1093
.
21.
Gomez-Bougie
P
,
Ménoret
E
,
Juin
P
,
Dousset
C
,
Pellat-Deceunynck
C
,
Amiot
M
.
Noxa controls Mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction
.
Biochem Biophys Res Commun
.
2011
;
413
(
3
):
460
-
464
.
22.
Jin
Y
,
Chen
K
,
De Paepe
A
, et al
.
Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma
.
Blood
.
2018
;
131
(
19
):
2138
-
2150
.
23.
Weirauch
MT
,
Yang
A
,
Albu
M
, et al
.
Determination and inference of eukaryotic transcription factor sequence specificity
.
Cell
.
2014
;
158
(
6
):
1431
-
1443
.
24.
Schmidlin
H
,
Diehl
SA
,
Nagasawa
M
, et al
.
Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression
.
Blood
.
2008
;
112
(
5
):
1804
-
1812
.
25.
White-Gilbertson
S
,
Hua
Y
,
Liu
B
.
The role of endoplasmic reticulum stress in maintaining and targeting multiple myeloma: a double-edged sword of adaptation and apoptosis
.
Front Genet
.
2013
;
4
:
109
.
26.
Todd
DJ
,
McHeyzer-Williams
LJ
,
Kowal
C
, et al
.
XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development
.
J Exp Med
.
2009
;
206
(
10
):
2151
-
2159
.
27.
Zhang
K
,
Wong
HN
,
Song
B
,
Miller
CN
,
Scheuner
D
,
Kaufman
RJ
.
The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis
.
J Clin Invest
.
2005
;
115
(
2
):
268
-
281
.
28.
Iwawaki
T
,
Akai
R
,
Kohno
K
.
IRE1α disruption causes histological abnormality of exocrine tissues, increase of blood glucose level, and decrease of serum immunoglobulin level
.
PLoS One
.
2010
;
5
(
9
):
e13052
.
29.
Ito
Y
,
Bae
S-C
,
Chuang
LSH
.
The RUNX family: developmental regulators in cancer
.
Nat Rev Cancer
.
2015
;
15
(
2
):
81
-
95
.
30.
Thijssen
R
,
Tian
L
,
Anderson
MA
, et al
.
Single-cell multiomics reveal the scale of multi-layered adaptations enabling CLL relapse during venetoclax therapy
.
Blood
.
2022
;
140
(
20
):
2127
-
2141
.
31.
Chipuk
JE
,
Bouchier-Hayes
L
,
Kuwana
T
,
Newmeyer
DD
,
Green
DR
.
PUMA couples the nuclear and cytoplasmic pro-apoptotic function of p53
.
Science
.
2005
;
309
(
5741
):
1732
-
1735
.
32.
Neri
P
,
Maity
R
,
Alberge
J-B
, et al
.
Mutations and copy number gains of the BCL2 family members mediate resistance to venetoclax in multiple myeloma (MM) patients [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
572
.
33.
Alberge
J-B
,
Sinha
S
,
Maity
R
, et al
.
IGLL5-BCL2L1 rearrangement with loss of BCL2 dependency as mechanism of venetoclax resistance in multiple myeloma (MM) [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
686
.
34.
Kaufman
JL
,
Gasparetto
C
,
Schjesvold
FH
, et al
.
Targeting BCL-2 with venetoclax and dexamethasone in patients with relapsed/refractory t(11;14) multiple myeloma
.
Am J Hematol
.
2021
;
96
(
4
):
418
-
427
.
35.
Gomez-Bougie
P
,
Wuillème-Toumi
S
,
Ménoret
E
, et al
.
Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma
.
Cancer Res
.
2007
;
67
(
11
):
5418
-
5424
.
36.
Zhou
N
,
Gutierrez-Uzquiza
A
,
Zheng
XY
, et al
.
RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation
.
Leukemia
.
2019
;
33
(
8
):
2006
-
2021
.
37.
Griffioen
MS
,
de Leeuw
DC
,
Janssen
JJWM
,
Smit
L
.
Targeting acute myeloid leukemia with venetoclax; biomarkers for sensitivity and rationale for venetoclax-based combination therapies
.
Cancers
.
2022
;
14
(
14
):
3456
.
38.
Mill
CP
,
Fiskus
W
,
DiNardo
CD
, et al
.
RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1
.
Blood
.
2019
;
134
(
1
):
59
-
73
.
39.
Weller
S
,
Toennießen
A
,
Schaefer
B
, et al
.
The BCL-2 inhibitor ABT-199/venetoclax synergizes with proteasome inhibition via transactivation of the MCL-1 antagonist NOXA
. 12.
Cell Death Discov
.
2022
;
8
(
1
):
215
.
40.
Pakos-Zebrucka
K
,
Koryga
I
,
Mnich
K
,
Ljujic
M
,
Samali
A
,
Gorman
AM
.
The integrated stress response
.
EMBO Rep
.
2016
;
17
(
10
):
1374
-
1395
.
41.
Descamps
G
,
Gomez-Bougie
P
,
Tamburini
J
, et al
.
The cap-translation inhibitor 4EGI-1 induces apoptosis in multiple myeloma through Noxa induction
.
Br J Cancer
.
2012
;
106
(
10
):
1660
-
1667
.
42.
Bajpai
R
,
Sharma
A
,
Achreja
A
, et al
.
Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
1228
.
43.
Dumont
A
,
Lohard
S
,
Maillet
L
,
Juin
PP
,
Barillé-Nion
S
.
NOXA the BCL-2 family member behind the scenes in cancer treatment
.
J Cell Signal
.
2020
;
1
(
4
):
127
-
143
.
44.
Kumar
SK
,
Harrison
SJ
,
Cavo
M
, et al
.
Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial
.
Lancet Oncol
.
2020
;
21
(
12
):
1630
-
1642
.
45.
Willis
SN
,
Chen
L
,
Dewson
G
, et al
.
pro-apoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins
.
Genes Dev
.
2005
;
19
(
11
):
1294
-
1305
.
46.
Han
J
,
Goldstein
LA
,
Hou
W
,
Rabinowich
H
.
Functional linkage between NOXA and Bim in mitochondrial apoptotic events
.
J Biol Chem
.
2007
;
282
(
22
):
16223
-
16231
.
47.
Lowman
XH
,
McDonnell
MA
,
Kosloske
A
, et al
.
The pro-apoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose
.
Mol Cell
.
2010
;
40
(
5
):
823
-
833
.
You do not currently have access to this content.
Sign in via your Institution