• TKI therapy alters CML stem and progenitor cell metabolism through both selection and metabolic reprogramming of specific subpopulations.

  • HIF-1 activation plays a critical role in CML stem cell adaptation to TKI treatment by restricting OXPHOS and maintaining stem cell dormancy.

Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1–mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.

1.
Chu
S
,
McDonald
T
,
Lin
A
, et al
.
Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment
.
Blood
.
2011
;
118
(
20
):
5565
-
5572
.
2.
Agarwal
P
,
Isringhausen
S
,
Li
H
, et al
.
Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells
.
Cell Stem Cell
.
2019
;
24
(
5
):
769
-
784.e6
.
3.
Zhang
B
,
Ho
YW
,
Huang
Q
, et al
.
Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia
.
Cancer Cell
.
2012
;
21
(
4
):
577
-
592
.
4.
Zhang
B
,
Li
M
,
McDonald
T
, et al
.
Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling
.
Blood
.
2013
;
121
(
10
):
1824
-
1838
.
5.
Agarwal
P
,
Zhang
B
,
Ho
Y
, et al
.
Enhanced targeting of CML stem and progenitor cells by inhibition of porcupine acyltransferase in combination with TKI
.
Blood
.
2017
;
129
(
8
):
1008
-
1020
.
6.
Wang
LS
,
Li
L
,
Li
L
, et al
.
MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors
.
Blood
.
2015
;
125
(
8
):
1302
-
1313
.
7.
Zhang
B
,
Chu
S
,
Agarwal
P
, et al
.
Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor-treated CML stem cells
.
Blood
.
2016
;
128
(
23
):
2671
-
2682
.
8.
Zhang
B
,
Li
L
,
Ho
Y
, et al
.
Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells
.
J Clin Invest
.
2016
;
126
(
3
):
975
-
991
.
9.
Li
L
,
Wang
L
,
Li
L
, et al
.
Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib
.
Cancer Cell
.
2012
;
21
(
2
):
266
-
281
.
10.
Zhang
B
,
Strauss
AC
,
Chu
S
, et al
.
Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate
.
Cancer Cell
.
2010
;
17
(
5
):
427
-
442
.
11.
Bigarella
CL
,
Liang
R
,
Ghaffari
S
.
Stem cells and the impact of ROS signaling
.
Development
.
2014
;
141
(
22
):
4206
-
4218
.
12.
Owusu-Ansah
E
,
Banerjee
U
.
Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
.
Nature
.
2009
;
461
(
7263
):
537
-
541
.
13.
Tothova
Z
,
Kollipara
R
,
Huntly
BJ
, et al
.
Foxos are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
.
Cell
.
2007
;
128
(
2
):
325
-
339
.
14.
Liberti
MV
,
Locasale
JW
.
The Warburg effect: how does it benefit cancer cells?
.
Trends Biochem Sci
.
2016
;
41
(
3
):
211
-
218
.
15.
Jones
CL
,
Stevens
BM
,
D'Alessandro
A
, et al
.
Inhibition of amino acid metabolism selectively targets human leukemia stem cells
.
Cancer Cell
.
2018
;
34
(
5
):
724
-
740.e4
.
16.
Lagadinou
ED
,
Sach
A
,
Callahan
K
, et al
.
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
.
Cell Stem Cell
.
2013
;
12
(
3
):
329
-
341
.
17.
Pollyea
DA
,
Stevens
BM
,
Jones
CL
, et al
.
Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia
.
Nat Med
.
2018
;
24
(
12
):
1859
-
1866
.
18.
Stevens
BM
,
Jones
CL
,
Pollyea
DA
, et al
.
Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells
.
Nat Cancer
.
2020
;
1
(
12
):
1176
-
1187
.
19.
Kuntz
EM
,
Baquero
P
,
Michie
AM
, et al
.
Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells
.
Nat Med
.
2017
;
23
(
10
):
1234
-
1240
.
20.
Abraham
A
,
Qiu
S
,
Chacko
BK
, et al
.
SIRT1 regulates metabolism and leukemogenic potential in CML stem cells
.
J Clin Invest
.
2019
;
129
(
7
):
2685
-
2701
.
21.
Liu
X
,
Sadhukhan
S
,
Sun
S
, et al
.
High-resolution metabolomics with acyl-CoA profiling reveals widespread remodeling in response to diet
.
Mol Cell Proteomics
.
2015
;
14
(
6
):
1489
-
1500
.
22.
Liu
X
,
Ser
Z
,
Locasale
JW
.
Development and quantitative evaluation of a high-resolution metabolomics technology
.
Anal Chem
.
2014
;
86
(
4
):
2175
-
2184
.
23.
Yuan
J
,
Bennett
BD
,
Rabinowitz
JD
.
Kinetic flux profiling for quantitation of cellular metabolic fluxes
.
Nat Protoc
.
2008
;
3
(
8
):
1328
-
1340
.
24.
Arguello
RJ
,
Combes
AJ
,
Char
R
, et al
.
SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution
.
Cell Metab
.
2020
;
32
(
6
):
1063
-
1075.e7
.
25.
Wolf
FA
,
Angerer
P
,
Theis
FJ
.
SCANPY: large-scale single-cell gene expression data analysis
.
Genome Biol
.
2018
;
19
(
1
):
15
.
26.
Adamik
J
,
Munson
PV
,
Hartmann
FJ
, et al
.
Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells
.
Nat Commun
.
2022
;
13
(
1
):
5184
.
27.
Verberk
SGS
,
de Goede
KE
,
Gorki
FS
,
van Dierendonck
X
,
Arguello
RJ
,
Van den Bossche
J
.
An integrated toolbox to profile macrophage immunometabolism
.
Cell Rep Methods
.
2022
;
2
(
4
):
100192
.
28.
Aibar
S
,
Gonzalez-Blas
CB
,
Moerman
T
, et al
.
SCENIC: single-cell regulatory network inference and clustering
.
Nat Methods
.
2017
;
14
(
11
):
1083
-
1086
.
29.
Wicks
EE
,
Semenza
GL
.
Hypoxia-inducible factors: cancer progression and clinical translation
.
J Clin Invest
.
2022
;
132
(
11
):
e159839
.
30.
Kong
D
,
Park
EJ
,
Stephen
AG
, et al
.
Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity
.
Cancer Res
.
2005
;
65
(
19
):
9047
-
9055
.
31.
Liang
R
,
Arif
T
,
Kalmykova
S
, et al
.
Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency
.
Cell Stem Cell
.
2020
;
26
(
3
):
359
-
376.e7
.
32.
Ludin
A
,
Gur-Cohen
S
,
Golan
K
, et al
.
Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment
.
Antioxid Redox Signal
.
2014
;
21
(
11
):
1605
-
1619
.
33.
Patel
SB
,
Nemkov
T
,
Stefanoni
D
, et al
.
Metabolic alterations mediated by STAT3 promotes drug persistence in CML
.
Leukemia
.
2021
;
35
(
12
):
3371
-
3382
.
34.
Simsek
T
,
Kocabas
F
,
Zheng
J
, et al
.
The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
.
Cell Stem Cell
.
2010
;
7
(
3
):
380
-
390
.
35.
Filippi
MD
,
Ghaffari
S
.
Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities
.
Blood
.
2019
;
133
(
18
):
1943
-
1952
.
36.
Takubo
K
,
Goda
N
,
Yamada
W
, et al
.
Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
.
Cell Stem Cell
.
2010
;
7
(
3
):
391
-
402
.
37.
Vukovic
M
,
Sepulveda
C
,
Subramani
C
, et al
.
Adult hematopoietic stem cells lacking Hif-1alpha self-renew normally
.
Blood
.
2016
;
127
(
23
):
2841
-
2846
.
38.
Mayerhofer
M
,
Valent
P
,
Sperr
WR
,
Griffin
JD
,
Sillaber
C
.
BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin
.
Blood
.
2002
;
100
(
10
):
3767
-
3775
.
39.
Zhao
F
,
Mancuso
A
,
Bui
TV
, et al
.
Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming
.
Oncogene
.
2010
;
29
(
20
):
2962
-
2972
.
40.
Zhang
H
,
Li
H
,
Xi
HS
,
Li
S
.
HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells
.
Blood
.
2012
;
119
(
11
):
2595
-
2607
.
41.
Ng
KP
,
Manjeri
A
,
Lee
KL
, et al
.
Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition
.
Blood
.
2014
;
123
(
21
):
3316
-
3326
.
42.
Cheloni
G
,
Tanturli
M
,
Tusa
I
, et al
.
Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine
.
Blood
.
2017
;
130
(
5
):
655
-
665
.
43.
Hwang
HJ
,
Lynn
SG
,
Vengellur
A
, et al
.
hypoxia inducible factors modulate mitochondrial oxygen consumption and transcriptional regulation of nuclear-encoded electron transport chain genes
.
Biochemistry
.
2015
;
54
(
24
):
3739
-
3748
.
44.
Fukuda
R
,
Zhang
H
,
Kim
JW
,
Shimoda
L
,
Dang
CV
,
Semenza
GL
.
HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells
.
Cell
.
2007
;
129
(
1
):
111
-
122
.
45.
Thomas
LW
,
Ashcroft
M
.
Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria
.
Cell Mol Life Sci
.
2019
;
76
(
9
):
1759
-
1777
.
46.
Wierenga
ATJ
,
Cunningham
A
,
Erdem
A
, et al
.
HIF1/2-exerted control over glycolytic gene expression is not functionally relevant for glycolysis in human leukemic stem/progenitor cells
.
Cancer Metab
.
2019
;
7
:
11
.
47.
Farge
T
,
Saland
E
,
de Toni
F
, et al
.
Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism
.
Cancer Discov
.
2017
;
7
(
7
):
716
-
735
.
48.
Rouault-Pierre
K
,
Lopez-Onieva
L
,
Foster
K
, et al
.
HIF-2alpha protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress
.
Cell Stem Cell
.
2013
;
13
(
5
):
549
-
563
.
49.
Reavie
L
,
Buckley
SM
,
Loizou
E
, et al
.
Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression
.
Cancer Cell
.
2013
;
23
(
3
):
362
-
375
.
50.
Abraham
SA
,
Hopcroft
LE
,
Carrick
E
, et al
.
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells
.
Nature
.
2016
;
534
(
7607
):
341
-
346
.
51.
Ahmadi
SE
,
Rahimi
S
,
Zarandi
B
,
Chegeni
R
,
Safa
M
.
MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies
.
J Hematol Oncol
.
2021
;
14
(
1
):
121
.
52.
Li
Y
,
Sun
XX
,
Qian
DZ
,
Dai
MS
.
Molecular crosstalk between MYC and HIF in cancer
.
Front Cell Dev Biol
.
2020
;
8
:
590576
.
53.
Gordan
JD
,
Thompson
CB
,
Simon
MC
.
HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation
.
Cancer Cell
.
2007
;
12
(
2
):
108
-
113
.
You do not currently have access to this content.
Sign in via your Institution