• Nrf2 regulates L2HG for histone methylation modification in SCD.

  • Nrf2 ablation and L2HG accumulation sensitize erythroid cells to ferroptosis.

Sickle cell disease (SCD) is a chronic hemolytic and systemic hypoxia condition with constant oxidative stress and significant metabolic alterations. However, little is known about the correlation between metabolic alterations and the pathophysiological symptoms. Here, we report that Nrf2, a master regulator of cellular antioxidant responses, regulates the production of the metabolite l-2-hydroxyglutarate (L2HG) to mediate epigenetic histone hypermethylation for gene expression involved in metabolic, oxidative, and ferroptotic stress responses in SCD. Mechanistically, Nrf2 was found to regulate the expression of L2HG dehydrogenase (L2hgdh) to mediate L2HG production under hypoxia. Gene expression profile analysis indicated that reactive oxygen species (ROS) and ferroptosis responses were the most significantly affected signaling pathways after Nrf2 ablation in SCD. Nrf2 silencing and L2HG supplementation sensitize human sickle erythroid cells to ROS and ferroptosis stress. The absence of Nrf2 and accumulation of L2HG significantly affect histone methylation for chromatin structure modification and reduce the assembly of transcription complexes on downstream target genes to regulate ROS and ferroptosis responses. Furthermore, pharmacological activation of Nrf2 was found to have protective effects against ROS and ferroptosis stress in SCD mice. Our data suggest a novel mechanism by which Nrf2 regulates L2HG levels to mediate SCD severity through ROS and ferroptosis stress responses, suggesting that targeting Nrf2 is a viable therapeutic strategy for ameliorating SCD symptoms.

1.
Platt
OS
,
Brambilla
DJ
,
Rosse
WF
, et al
.
Mortality in sickle cell disease. Life expectancy and risk factors for early death
.
N Engl J Med
.
1994
;
330
(
23
):
1639
-
1644
.
2.
Rees
DC
,
Williams
TN
,
Gladwin
MT
.
Sickle-cell disease
.
Lancet
.
2010
;
376
(
9757
):
2018
-
2031
.
3.
Li
J
,
Cao
F
,
Yin
HL
, et al
.
Ferroptosis: past, present and future
.
Cell Death Dis
.
2020
;
11
(
2
):
88
-
101
.
4.
Jiang
X
,
Stockwell
BR
,
Conrad
M
.
Ferroptosis: mechanisms, biology and role in disease
.
Nat Rev Mol Cell Biol
.
2021
;
22
(
4
):
266
-
282
.
5.
Menon
AV
,
Liu
J
,
Tsai
HP
, et al
.
Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease
.
Blood
.
2022
;
139
(
6
):
936
-
941
.
6.
Youssef
LA
,
Rebbaa
A
,
Pampou
S
, et al
.
Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion
.
Blood
.
2018
;
131
(
23
):
2581
-
2593
.
7.
Itoh
K
,
Chiba
T
,
Takahashi
S
, et al
.
An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
.
Biochem Biophys Res Commun
.
1997
;
236
(
2
):
313
-
322
.
8.
Tonelli
C
,
Chio
IIC
,
Tuveson
DA
.
Transcriptional regulation by Nrf2
.
Antioxid Redox Signal
.
2018
;
29
(
17
):
1727
-
1745
.
9.
Ma
Q
.
Role of nrf2 in oxidative stress and toxicity
.
Annu Rev Pharmacol Toxicol
.
2013
;
53
:
401
-
426
.
10.
Rojo de la Vega
M
,
Chapman
E
,
Zhang
DD
.
NRF2 and the hallmarks of cancer
.
Cancer Cell
.
2018
;
34
(
1
):
21
-
43
.
11.
Zhu
X
,
Xi
C
,
Thomas
B
,
Pace
BS
.
Loss of NRF2 function exacerbates the pathophysiology of sickle cell disease in a transgenic mouse model
.
Blood
.
2018
;
131
(
5
):
558
-
562
.
12.
Alam
MM
,
Okazaki
K
,
Nguyen
LTT
, et al
.
Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2
.
J Biol Chem
.
2017
;
292
(
18
):
7519
-
7530
.
13.
Huang
BW
,
Ray
PD
,
Iwasaki
K
,
Tsuji
Y
.
Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4
.
FASEB J
.
2013
;
27
(
9
):
3763
-
3774
.
14.
Kang
KA
,
Piao
MJ
,
Ryu
YS
, et al
.
Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells
.
Oncotarget
.
2016
;
7
(
26
):
40594
-
40620
.
15.
Ray
PD
,
Huang
BW
,
Tsuji
Y
.
Coordinated regulation of Nrf2 and histone H3 serine 10 phosphorylation in arsenite-activated transcription of the human heme oxygenase-1 gene
.
Biochim Biophys Acta
.
2015
;
1849
(
10
):
1277
-
1288
.
16.
Sekine
H
,
Okazaki
K
,
Ota
N
, et al
.
The mediator subunit MED16 transduces NRF2-activating signals into antioxidant gene expression
.
Mol Cell Biol
.
2016
;
36
(
3
):
407
-
420
.
17.
Chen
D
,
Tavana
O
,
Chu
B
, et al
.
NRF2 is a major target of ARF in p53-independent tumor suppression
.
Mol Cell
.
2017
;
68
(
1
):
224
-
232.e4e4
.
18.
Kobayashi
EH
,
Suzuki
T
,
Funayama
R
, et al
.
Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription
.
Nat Commun
.
2016
;
7
:
11624
.
19.
Chervona
Y
,
Costa
M
.
The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals
.
Free Radic Biol Med
.
2012
;
53
(
5
):
1041
-
1047
.
20.
Fan
J
,
Krautkramer
KA
,
Feldman
JL
,
Denu
JM
.
Metabolic regulation of histone post-translational modifications
.
ACS Chem Biol
.
2015
;
10
(
1
):
95
-
108
.
21.
Guillaumet-Adkins
A
,
Yanez
Y
,
Peris-Diaz
MD
,
Calabria
I
,
Palanca-Ballester
C
,
Sandoval
J
.
Epigenetics and oxidative stress in aging
.
Oxid Med Cell Longev
.
2017
;
2017
:
9175806
.
22.
Batie
M
,
Del Peso
L
,
Rocha
S
.
Hypoxia and chromatin: a focus on transcriptional repression mechanisms
.
Biomedicines
.
2018
;
6
(
2
):
47
.
23.
Choudhry
H
,
Harris
AL
.
Advances in hypoxia-inducible factor biology
.
Cell Metab
.
2018
;
27
(
2
):
281
-
298
.
24.
Hyacinth
HI
.
Sickle-cell anaemia needs more food?
.
Lancet Haematol
.
2018
;
5
(
4
):
e130
-
e131
.
25.
Mandese
V
,
Bigi
E
,
Bruzzi
P
, et al
.
Endocrine and metabolic complications in children and adolescents with sickle cell disease: an Italian cohort study
.
BMC Pediatr
.
2019
;
19
(
1
):
56
.
26.
Morris
CR
,
Brown
LAS
,
Reynolds
M
, et al
.
Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain
.
Blood
.
2020
;
136
(
12
):
1402
-
1406
.
27.
Morganti
C
,
Cabezas-Wallscheid
N
,
Ito
K
.
Metabolic regulation of hematopoietic stem cells
.
Hemasphere
.
2022
;
6
(
7
):
e740
.
28.
Oburoglu
L
,
Tardito
S
,
Fritz
V
, et al
.
Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification
.
Cell Stem Cell
.
2014
;
15
(
2
):
169
-
184
.
29.
Culp-Hill
R
,
Srinivasan
AJ
,
Gehrke
S
, et al
.
Effects of red blood cell (RBC) transfusion on sickle cell disease recipient plasma and RBC metabolism
.
Transfusion
.
2018
;
58
(
12
):
2797
-
2806
.
30.
Darghouth
D
,
Koehl
B
,
Madalinski
G
, et al
.
Pathophysiology of sickle cell disease is mirrored by the red blood cell metabolome
.
Blood
.
2011
;
117
(
6
):
e57
-
e66
.
31.
Islam
MS
,
Leissing
TM
,
Chowdhury
R
,
Hopkinson
RJ
,
Schofield
CJ
.
2-oxoglutarate-dependent oxygenases
.
Annu Rev Biochem
.
2018
;
87
(
1
):
585
-
620
.
32.
Xiao
M
,
Yang
H
,
Xu
W
, et al
.
Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
.
Genes Dev
.
2012
;
26
(
12
):
1326
-
1338
.
33.
Lee
J
,
Yesilkanal
AE
,
Wynne
JP
, et al
.
Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism
.
Nature
.
2019
;
568
(
7751
):
254
-
258
.
34.
Mitsuishi
Y
,
Taguchi
K
,
Kawatani
Y
, et al
.
Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
.
Cancer Cell
.
2012
;
22
(
1
):
66
-
79
.
35.
Ryan
TM
,
Ciavatta
DJ
,
Townes
TM
.
Knockout-transgenic mouse model of sickle cell disease
.
Science
.
1997
;
278
(
5339
):
873
-
876
.
36.
Koulnis
M
,
Pop
R
,
Porpiglia
E
,
Shearstone
JR
,
Hidalgo
D
,
Socolovsky
M
.
Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay
.
J Vis Exp
.
2011
;
54
:
2809
.
37.
Zhu
X
,
Li
B
,
Pace
BS
.
NRF2 mediates gamma-globin gene regulation and fetal hemoglobin induction in human erythroid progenitors
.
Haematologica
.
2017
;
102
(
8
):
e285
-
e288
.
38.
Hu
J
,
Liu
J
,
Xue
F
, et al
.
Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo
.
Blood
.
2013
;
121
(
16
):
3246
-
3253
.
39.
Zhu
X
,
Ling
J
,
Zhang
L
,
Pi
W
,
Wu
M
,
Tuan
D
.
A facilitated tracking and transcription mechanism of long-range enhancer function
.
Nucleic Acids Res
.
2007
;
35
(
16
):
5532
-
5544
.
40.
Cox
JE
,
Thummel
CS
,
Tennessen
JM
.
Metabolomic studies in drosophila
.
Genetics
.
2017
;
206
(
3
):
1169
-
1185
.
41.
Cheng
QY
,
Xiong
J
,
Huang
W
, et al
.
Sensitive determination of onco-metabolites of D- and L-2-hydroxyglutarate enantiomers by chiral derivatization combined with liquid chromatography/mass spectrometry analysis
.
Sci Rep
.
2015
;
5
:
15217
.
42.
Ghosh
S
,
Tan
F
,
Yu
T
, et al
.
Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease
.
PLoS One
.
2011
;
6
(
3
):
e18399
.
43.
Belcher
JD
,
Chen
C
,
Nguyen
J
, et al
.
Control of oxidative stress and inflammation in sickle cell disease with the Nrf2 activator dimethyl fumarate
.
Antioxid Redox Signal
.
2017
;
26
(
14
):
748
-
762
.
44.
Sun
K
,
Xia
Y
.
New insights into sickle cell disease: a disease of hypoxia
.
Curr Opin Hematol
.
2013
;
20
(
3
):
215
-
221
.
45.
Caboot
JB
,
Allen
JL
.
Hypoxemia in sickle cell disease: significance and management
.
Paediatr Respir Rev
.
2014
;
15
(
1
):
17
-
23
.
46.
Hyun
K
,
Jeon
J
,
Park
K
,
Kim
J
.
Writing, erasing and reading histone lysine methylations
.
Exp Mol Med
.
2017
;
49
(
4
):
e324
.
47.
Struys
EA
.
2-Hydroxyglutarate is not a metabolite; D-2-hydroxyglutarate and L-2-hydroxyglutarate are
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
51
):
E4939
.
48.
Intlekofer
AM
,
Dematteo
RG
,
Venneti
S
, et al
.
Hypoxia induces production of L-2-Hydroxyglutarate
.
Cell Metab
.
2015
;
22
(
2
):
304
-
311
.
49.
Oldham
WM
,
Clish
CB
,
Yang
Y
,
Loscalzo
J
.
Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress
.
Cell Metab
.
2015
;
22
(
2
):
291
-
303
.
50.
Ye
D
,
Guan
KL
,
Xiong
Y
.
Metabolism, activity, and targeting of d- and L-2-hydroxyglutarates
.
Trends Cancer
.
2018
;
4
(
2
):
151
-
165
.
51.
Zein
S
,
Li
W
,
Ramakrishnan
V
, et al
.
Identification of fetal hemoglobin-inducing agents using the human leukemia KU812 cell line
.
Exp Biol Med
.
2010
;
235
(
11
):
1385
-
1394
.
52.
Chen
X
,
Yu
C
,
Kang
R
,
Tang
D
.
Iron metabolism in ferroptosis
.
Front Cell Dev Biol
.
2020
;
8
:
590226
.
53.
Gan
B
.
Mitochondrial regulation of ferroptosis
.
J Cell Biol
.
2021
;
220
(
9
):
e202105043
.
54.
Lin
X
,
Ping
J
,
Wen
Y
,
Wu
Y
.
The mechanism of ferroptosis and applications in tumor treatment
.
Front Pharmacol
.
2020
;
11
:
1061
.
55.
Krishnamoorthy
S
,
Pace
B
,
Gupta
D
, et al
.
Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease
.
JCI Insight
.
2017
;
2
(
20
):
e96409
.
56.
Adebiyi
MG
,
Manalo
JM
,
Xia
Y
.
Metabolomic and molecular insights into sickle cell disease and innovative therapies
.
Blood Adv
.
2019
;
3
(
8
):
1347
-
1355
.
57.
Smiley
D
,
Dagogo-Jack
S
,
Umpierrez
G
.
Therapy insight: metabolic and endocrine disorders in sickle cell disease
.
Nat Clin Pract Endocrinol Metab
.
2008
;
4
(
2
):
102
-
109
.
58.
Dembele
KC
,
Veyrat-Durebex
C
,
Aldiouma
G
, et al
.
Sickle cell disease: metabolomic profiles of vaso-occlusive crisis in plasma and erythrocytes
.
J Clin Med
.
2020
;
9
(
4
):
1092
.
59.
D'Alessandro
A
,
Xia
Y
.
Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia
.
Curr Opin Hematol
.
2020
;
27
(
3
):
155
-
162
.
60.
Raghavachari
N
,
Xu
X
,
Harris
A
, et al
.
Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease
.
Circulation
.
2007
;
115
(
12
):
1551
-
1562
.
61.
Sun
K
,
D'Alessandro
A
,
Ahmed
MH
, et al
.
Structural and functional insight of sphingosine 1-phosphate-mediated pathogenic metabolic reprogramming in sickle cell disease
.
Sci Rep
.
2017
;
7
(
1
):
15281
.
62.
Chakraborty
AA
,
Laukka
T
,
Myllykoski
M
, et al
.
Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate
.
Science
.
2019
;
363
(
6432
):
1217
-
1222
.
63.
Ding
W
,
Smulan
LJ
,
Hou
NS
,
Taubert
S
,
Watts
JL
,
Walker
AK
.
S-adenosylmethionine levels govern innate immunity through distinct methylation-dependent pathways
.
Cell Metab
.
2015
;
22
(
4
):
633
-
645
.
64.
Xu
W
,
Yang
H
,
Liu
Y
, et al
.
Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases
.
Cancer Cell
.
2011
;
19
(
1
):
17
-
30
.
65.
Kranendijk
M
,
Struys
EA
,
Salomons
GS
,
Van der Knaap
MS
,
Jakobs
C
.
Progress in understanding 2-hydroxyglutaric acidurias
.
J Inherit Metab Dis
.
2012
;
35
(
4
):
571
-
587
.
66.
Shim
EH
,
Livi
CB
,
Rakheja
D
, et al
.
L-2-hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer
.
Cancer Discov
.
2014
;
4
(
11
):
1290
-
1298
.
67.
Bayele
HK
,
Balesaria
S
,
Srai
SK
.
Phytoestrogens modulate hepcidin expression by Nrf2: Implications for dietary control of iron absorption
.
Free Radic Biol Med
.
2015
;
89
:
1192
-
1202
.
68.
Campbell
MR
,
Karaca
M
,
Adamski
KN
,
Chorley
BN
,
Wang
X
,
Bell
DA
.
Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway
.
Oxid Med Cell Longev
.
2013
;
2013
:
120305
.
69.
Chorley
BN
,
Campbell
MR
,
Wang
X
, et al
.
Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha
.
Nucleic Acids Res
.
2012
;
40
(
15
):
7416
-
7429
.
70.
Lim
PJ
,
Duarte
TL
,
Arezes
J
, et al
.
Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin
.
Nat Metab
.
2019
;
1
(
5
):
519
-
531
.
71.
van Raaij
SEG
,
Masereeuw
R
,
Swinkels
DW
,
van Swelm
RPL
.
Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells
.
Toxicol Lett
.
2018
;
295
:
179
-
186
.
72.
Porter
J
,
Garbowski
M
.
Consequences and management of iron overload in sickle cell disease
.
Hematology Am Soc Hematol Educ Program
.
2013
;
2013
(
1
):
447
-
456
.
73.
Mbiandjeu
SCT
,
Mattè
A
,
Federti
E
, et al
.
The novel role that Nrf2 plays in erythropoiesis during aging [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
3502
.
74.
Sundd
P
,
Gladwin
MT
,
Novelli
EM
.
Pathophysiology of sickle cell disease
.
Annu Rev Pathol
.
2019
;
14
:
263
-
292
.
75.
Feng
R
,
Mayuranathan
T
,
Huang
P
, et al
.
Activation of gamma-globin expression by hypoxia-inducible factor 1alpha
.
Nature
.
2022
;
610
(
7933
):
783
-
790
.
76.
Kaul
DK
,
Fabry
ME
,
Suzuka
SM
,
Zhang
X
.
Antisickling fetal hemoglobin reduces hypoxia-inducible factor-1alpha expression in normoxic sickle mice: microvascular implications
.
Am J Physiol Heart Circ Physiol
.
2013
;
304
(
1
):
H42
-
50
.
77.
Faes
C
,
Juban
G
,
Aufradet
E
, et al
.
Effects of hypoxia-reoxygenation stimuli on renal redox status and nuclear factor erythroid 2-related factor 2 pathway in sickle cell SAD mice
.
Exp Physiol
.
2020
;
105
(
2
):
357
-
369
.
78.
Zhang
X
,
Zhang
W
,
Ma
SF
, et al
.
Hypoxic response contributes to altered gene expression and precapillary pulmonary hypertension in patients with sickle cell disease
.
Circulation
.
2014
;
129
(
16
):
1650
-
1658
.
79.
Song
X
,
Long
D
.
Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases
.
Front Neurosci
.
2020
;
14
:
267
.
You do not currently have access to this content.
Sign in via your Institution