In a short time, single-cell platforms have become the norm in many fields of research, including multiple myeloma (MM). In fact, the large amount of cellular heterogeneity in MM makes single-cell platforms particularly attractive because bulk assessments can miss valuable information about cellular subpopulations and cell-to-cell interactions. The decreasing cost and increasing accessibility of single-cell platform, combined with breakthroughs in obtaining multiomics data for the same cell and innovative computational programs for analyzing data, have allowed single-cell studies to make important insights into MM pathogenesis; yet, there is still much to be done. In this review, we will first focus on the types of single-cell profiling and the considerations for designing a single-cell profiling experiment. Then, we will discuss what have learned from single-cell profiling about myeloma clonal evolution, transcriptional reprogramming, and drug resistance, and about the MM microenvironment during precursor and advanced disease.

1.
Paiva
B
,
Cedena
M-T
,
Puig
N
, et al
.
Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients
.
Blood
.
2016
;
127
(
25
):
3165
-
3174
.
2.
Paiva
B
,
Gutiérrez
NC
,
Rosiñol
L
, et al
.
High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma
.
Blood
.
2012
;
119
(
3
):
687
-
691
.
3.
Guillaumet-Adkins
A
,
Rodriguez-Esteban
G
,
Mereu
E
, et al
.
Single-cell transcriptome conservation in cryopreserved cells and tissues
.
Genome Biol
.
2017
;
18
(
1
):
45
.
4.
Wu
SZ
,
Roden
DL
,
Al-Eryani
G
, et al
.
Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis
.
Genome Med
.
2021
;
13
(
1
):
81
.
5.
Madissoon
E
,
Wilbrey-Clark
A
,
Miragaia
RJ
, et al
.
scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation
.
Genome Biol
.
2019
;
21
(
1
):
1
.
6.
Massoni-Badosa
R
,
Iacono
G
,
Moutinho
C
, et al
.
Sampling time-dependent artifacts in single-cell genomics studies
.
Genome Biol
.
2020
;
21
(
1
):
112
.
7.
Lähnemann
D
,
Köster
J
,
Szczurek
E
, et al
.
Eleven grand challenges in single-cell data science
.
Genome Biol
.
2020
;
21
(
1
):
31
.
8.
Argelaguet
R
,
Cuomo
ASE
,
Stegle
O
,
Marioni
JC
.
Computational principles and challenges in single-cell data integration
.
Nat Biotechnol
.
2021
;
39
(
10
):
1202
-
1215
.
9.
Slyper
M
,
Porter
CBM
,
Ashenberg
O
, et al
.
A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors
.
Nat Med
.
2020
;
26
(
5
):
792
-
802
.
10.
Tran
HTN
,
Ang
KS
,
Chevrier
M
, et al
.
A benchmark of batch-effect correction methods for single-cell RNA sequencing data
.
Genome Biol
.
2020
;
21
(
1
):
12
.
11.
Fei
T
,
Yu
T
.
scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment
.
Bioinformatics
.
2020
;
36
(
10
):
3115
-
3123
.
12.
Dal Molin
A
,
Di Camillo
B
.
How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives
.
Brief Bioinform
.
2019
;
20
(
4
):
1384
-
1394
.
13.
Haghverdi
L
,
Lun
ATL
,
Morgan
MD
,
Marioni
JC
.
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
.
Nat Biotechnol
.
2018
;
36
(
5
):
421
-
427
.
14.
Tang
F
,
Barbacioru
C
,
Wang
Y
, et al
.
mRNA-Seq whole-transcriptome analysis of a single cell
.
Nat Methods
.
2009
;
6
(
5
):
377
-
382
.
15.
Aldridge
S
,
Teichmann
SA
.
Single cell transcriptomics comes of age
.
Nat Commun
.
2020
;
11
(
1
):
4307
.
16.
Haque
A
,
Engel
J
,
Teichmann
SA
,
Lönnberg
T
.
A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications
.
Genome Med
.
2017
;
9
(
1
):
75
.
17.
Anaparthy
N
,
Ho
Y-J
,
Martelotto
L
,
Hammell
M
,
Hicks
J
.
Single-cell applications of next-generation sequencing
.
Cold Spring Harb Perspect Med
.
2019
;
9
(
10
):
a026898
.
18.
Rashid
NU
,
Sperling
AS
,
Bolli
N
, et al
.
Differential and limited expression of mutant alleles in multiple myeloma
.
Blood
.
2014
;
124
(
20
):
3110
-
3117
.
19.
DeKosky
BJ
,
Ippolito
GC
,
Deschner
RP
, et al
.
High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire
.
Nat Biotechnol
.
2013
;
31
(
2
):
166
-
169
.
20.
Howie
B
,
Sherwood
AM
,
Berkebile
AD
, et al
.
High-throughput pairing of T cell receptor α and β sequences
.
Sci Transl Med
.
2015
;
7
(
301
):
301ra131
.
21.
Redmond
D
,
Poran
A
,
Elemento
O
.
Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq
.
Genome Med
.
2016
;
8
(
1
):
80
.
22.
Stoeckius
M
,
Hafemeister
C
,
Stephenson
W
, et al
.
Simultaneous epitope and transcriptome measurement in single cells
.
Nat Methods
.
2017
;
14
(
9
):
865
-
868
.
23.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
24.
Cusanovich
DA
,
Daza
R
,
Adey
A
, et al
.
Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing
.
Science
.
2015
;
348
(
6237
):
910
-
914
.
25.
Bartosovic
M
,
Kabbe
M
,
Castelo-Branco
G
.
Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues
.
Nat Biotechnol
.
2021
;
39
(
7
):
825
-
835
.
26.
Rotem
A
,
Ram
O
,
Shoresh
N
, et al
.
Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state
.
Nat Biotechnol
.
2015
;
33
(
11
):
1165
-
1172
.
27.
Carter
B
,
Ku
WL
,
Kang
JY
, et al
.
Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq)
.
Nat Commun
.
2019
;
10
(
1
):
3747
.
28.
Clark
SJ
,
Smallwood
SA
,
Lee
HJ
,
Krueger
F
,
Reik
W
,
Kelsey
G
.
Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq)
.
Nat Protoc
.
2017
;
12
(
3
):
534
-
547
.
29.
Taavitsainen
S
,
Engedal
N
,
Cao
S
, et al
.
Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse
.
Nat Commun
.
2021
;
12
(
1
):
5307
.
30.
Grosselin
K
,
Durand
A
,
Marsolier
J
, et al
.
High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer
.
Nat Genet
.
2019
;
51
(
6
):
1060
-
1066
.
31.
Casado-Pelaez
M
,
Bueno-Costa
A
,
Esteller
M
.
Single cell cancer epigenetics
.
Trends Cancer
.
2022
;
8
(
10
):
820
-
838
.
32.
Meir
Z
,
Mukamel
Z
,
Chomsky
E
,
Lifshitz
A
,
Tanay
A
.
Single-cell analysis of clonal maintenance of transcriptional and epigenetic states in cancer cells
.
Nat Genet
.
2020
;
52
(
7
):
709
-
718
.
33.
Bian
S
,
Hou
Y
,
Zhou
X
, et al
.
Single-cell multiomics sequencing and analyses of human colorectal cancer
.
Science
.
2018
;
362
(
6418
):
1060
-
1063
.
34.
Luecken
MD
,
Buttner
M
,
Chaichoompu
K
, et al
.
Benchmarking atlas-level data integration in single-cell genomics
.
Nat Methods
.
2022
;
19
(
1
):
41
-
50
.
35.
You
Y
,
Tian
L
,
Su
S
, et al
.
Benchmarking UMI-based single-cell RNA-seq preprocessing workflows
.
Genome Biol
.
2021
;
22
(
1
):
339
.
36.
Mereu
E
,
Lafzi
A
,
Moutinho
C
, et al
.
Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
.
Nat Biotechnol
.
2020
;
38
(
6
):
747
-
755
.
37.
Saelens
W
,
Cannoodt
R
,
Todorov
H
,
Saeys
Y
.
A comparison of single-cell trajectory inference methods
.
Nat Biotechnol
.
2019
;
37
(
5
):
547
-
554
.
38.
Yu
L
,
Cao
Y
,
Yang
JYH
,
Yang
P
.
Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
.
Genome Biol
.
2022
;
23
(
1
):
49
.
39.
Nolet
C
,
Lal
A
,
Ilango
R
, et al
.
Accelerating single-cell genomic analysis with GPUs
.
bioRxiv
.
Preprint posted online 28 May 2022
.
40.
Li
H
,
Durbin
R
.
Fast and accurate short read alignment with Burrows-Wheeler transform
.
Bioinformatics
.
2009
;
25
(
14
):
1754
-
1760
.
41.
Patro
R
,
Duggal
G
,
Love
MI
,
Irizarry
RA
,
Kingsford
C
.
Salmon provides fast and bias-aware quantification of transcript expression
.
Nat Methods
.
2017
;
14
(
4
):
417
-
419
.
42.
Aktas Samur
A
,
Minvielle
S
,
Shammas
M
, et al
.
Deciphering the chronology of copy number alterations in multiple Myeloma
.
Blood Cancer J
.
2019
;
9
(
4
):
39
.
43.
Samur
MK
,
Aktas Samur
A
,
Fulciniti
M
, et al
.
Genome-wide somatic alterations in multiple myeloma reveal a superior outcome group
.
J Clin Oncol
.
2020
;
38
(
27
):
3107
-
3118
.
44.
Samur
MK
,
Minvielle
S
,
Gulla
A
, et al
.
Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma
.
Leukemia
.
2018
;
32
(
12
):
2626
-
2635
.
45.
Ansari-Pour
N
,
Samur
MK
,
Flynt
E
, et al
.
Whole-genome analysis identifies novel drivers and high-risk double-hit events in relapsed/refractory myeloma
.
Blood
.
2023
;
141
(
6
):
620
-
633
.
46.
Walker
BA
,
Mavrommatis
K
,
Wardell
CP
, et al
.
Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma
.
Blood
.
2018
;
132
(
6
):
587
-
597
.
47.
Maura
F
,
Bolli
N
,
Angelopoulos
N
, et al
.
Genomic landscape and chronological reconstruction of driver events in multiple myeloma
.
Nat Commun
.
2019
;
10
(
1
):
3835
.
48.
Bolli
N
,
Maura
F
,
Minvielle
S
, et al
.
Genomic patterns of progression in smoldering multiple myeloma
.
Nat Commun
.
2018
;
9
(
1
):
3363
.
49.
Corre
J
,
Munshi
NC
,
Avet-Loiseau
H
.
Risk factors in multiple myeloma: is it time for a revision?
.
Blood
.
2021
;
137
(
1
):
16
-
19
.
50.
Robiou du Pont
S
,
Cleynen
A
,
Fontan
C
, et al
.
Genomics of multiple myeloma
.
J Clin Oncol
.
2017
;
35
(
9
):
963
-
967
.
51.
Corre
J
,
Munshi
N
,
Avet-Loiseau
H
.
Genetics of multiple myeloma: another heterogeneity level?
.
Blood
.
2015
;
125
(
12
):
1870
-
1876
.
52.
Tarabichi
M
,
Salcedo
A
,
Deshwar
AG
, et al
.
A practical guide to cancer subclonal reconstruction from DNA sequencing
.
Nat Methods
.
2021
;
18
(
2
):
144
-
155
.
53.
Samur
MK
,
Shah
PK
,
Wang
X
, et al
.
The shaping and functional consequences of the dosage effect landscape in multiple myeloma
.
BMC Genom
.
2013
;
14
:
672
.
54.
Jia
Q
,
Chu
H
,
Jin
Z
,
Long
H
,
Zhu
B
.
High-throughput single-сell sequencing in cancer research
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
145
.
55.
Almendro
V
,
Cheng
Y-K
,
Randles
A
, et al
.
Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity
.
Cell Rep
.
2014
;
6
(
3
):
514
-
527
.
56.
González-Silva
L
,
Quevedo
L
,
Varela
I
.
Tumor functional heterogeneity unraveled by scRNA-seq technologies
.
Trends Cancer
.
2020
;
6
(
1
):
13
-
19
.
57.
Liu
R
,
Gao
Q
,
Foltz
SM
, et al
.
Co-evolution of tumor and immune cells during progression of multiple myeloma
.
Nat Commun
.
2021
;
12
(
1
):
2559
.
58.
Ledergor
G
,
Weiner
A
,
Zada
M
, et al
.
Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma
.
Nat Med
.
2018
;
24
(
12
):
1867
-
1876
.
59.
Goicoechea
I
,
Puig
N
,
Cedena
MT
, et al
.
Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma
.
Blood
.
2021
;
137
(
1
):
49
-
60
.
60.
Samur
MK
,
Fulciniti
M
,
Aktas Samur
A
, et al
.
Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma
.
Nat Commun
.
2021
;
12
(
1
):
868
.
61.
Da Vià
MC
,
Dietrich
O
,
Truger
M
, et al
.
Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma
.
Nat Med
.
2021
;
27
(
4
):
616
-
619
.
62.
Lohr
JG
,
Kim
S
,
Gould
J
, et al
.
Genetic interrogation of circulating multiple myeloma cells at single-cell resolution
.
Sci Transl Med
.
2016
;
8
(
363
):
363ra147
.
63.
Garces
JJ
,
Simicek
M
,
Vicari
M
, et al
.
Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination
.
Leukemia
.
2020
;
34
(
2
):
589
-
603
.
64.
Maia
C
,
Puig
N
,
Cedena
M-T
, et al
.
Biological and clinical significance of dysplastic hematopoiesis in patients with newly diagnosed multiple myeloma
.
Blood
.
2020
;
135
(
26
):
2375
-
2387
.
65.
Merz
M
,
Merz
AMA
,
Wang
J
, et al
.
Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma
.
Nat Commun
.
2022
;
13
(
1
):
807
.
66.
Lannes
R
,
Samur
M
,
Perrot
A
, et al
.
In multiple myeloma, high-risk secondary genetic events observed at relapse are present from diagnosis in tiny, undetectable subclonal populations
.
J Clin Oncol
.
2022
;
41
(
9
):
1695
-
1702
.
67.
Frede
J
,
Anand
P
,
Sotudeh
N
, et al
.
Dynamic transcriptional reprogramming leads to immunotherapeutic vulnerabilities in myeloma
.
Nat Cell Biol
.
2021
;
23
(
11
):
1199
-
1211
.
68.
Alameda
D
,
Goicoechea
I
,
Vicari
M
, et al
.
Tumor cells in light-chain amyloidosis and myeloma show distinct transcriptional rewiring of normal plasma cell development
.
Blood
.
2021
;
138
(
17
):
1583
-
1589
.
69.
Masuda
T
,
Haji
S
,
Nakashima
Y
, et al
.
Identification of a drug-response gene in multiple myeloma through longitudinal single-cell transcriptome sequencing
.
iScience
.
2022
;
25
(
8
):
104781
.
70.
Kumar
H
,
Mazumder
S
,
Chakravarti
S
, et al
.
secDrug: a pipeline to discover novel drug combinations to kill drug-resistant multiple myeloma cells using a greedy set cover algorithm and single-cell multi-omics
.
Blood Cancer J
.
2022
;
12
(
3
):
39
.
71.
Waldschmidt
JM
,
Kloeber
JA
,
Anand
P
, et al
.
Single-cell profiling reveals metabolic reprogramming as a resistance mechanism in BRAF-mutated multiple myeloma
.
Clin Cancer Res
.
2021
;
27
(
23
):
6432
-
6444
.
72.
Cohen
YC
,
Zada
M
,
Wang
S-Y
, et al
.
Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing
.
Nat Med
.
2021
;
27
(
3
):
491
-
503
.
73.
Fowler
NH
,
Cheah
CY
,
Gascoyne
RD
, et al
.
Role of the tumor microenvironment in mature B-cell lymphoid malignancies
.
Haematologica
.
2016
;
101
(
5
):
531
-
540
.
74.
García-Ortiz
A
,
Rodríguez-García
Y
,
Encinas
J
, et al
.
The Role of tumor microenvironment in multiple myeloma development and progression
.
Cancers
.
2021
;
13
(
2
):
217
.
75.
Kawano
Y
,
Moschetta
M
,
Manier
S
, et al
.
Targeting the bone marrow microenvironment in multiple myeloma
.
Immunol Rev
.
2015
;
263
(
1
):
160
-
172
.
76.
Bianchi
G
,
Munshi
NC
.
Pathogenesis beyond the cancer clone(s) in multiple myeloma
.
Blood
.
2015
;
125
(
20
):
3049
-
3058
.
77.
Rodriguez-Otero
P
,
Paiva
B
,
San-Miguel
JF
.
Roadmap to cure multiple myeloma
.
Cancer Treat Rev
.
2021
;
100
:
102284
.
78.
Tirosh
I
,
Izar
B
,
Prakadan
SM
, et al
.
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
.
Science
.
2016
;
352
(
6282
):
189
-
196
.
79.
Puram
SV
,
Tirosh
I
,
Parikh
AS
, et al
.
Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer
.
Cell
.
2017
;
171
(
7
):
1611
-
1624.e24
.
80.
Hatlen
MA
,
Schmidt-Kittler
O
,
Sherwin
CA
, et al
.
Acquired on-target clinical resistance validates FGFR4 as a driver of hepatocellular carcinoma
.
Cancer Discov
.
2019
;
9
(
12
):
1686
-
1695
.
81.
Zavidij
O
,
Haradhvala
NJ
,
Mouhieddine
TH
, et al
.
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
.
Nat Cancer
.
2020
;
1
(
5
):
493
-
506
.
82.
Bailur
JK
,
McCachren
SS
,
Doxie
DB
, et al
.
Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy
.
JCI Insight
.
2019
;
5
(
11
):
e127807
.
83.
Schinke
C
,
Poos
AM
,
Bauer
MA
, et al
.
Characterizing the role of the immune microenvironment in multiple myeloma progression at a single cell level
.
Blood Adv
.
2022
;
6
(
22
):
5873
-
5883
.
84.
Ogiya
D
,
Liu
J
,
Ohguchi
H
, et al
.
The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications
.
Blood
.
2020
;
136
(
20
):
2334
-
2345
.
85.
Binder
M
,
Szalat
RE
,
Fulciniti
M
,
Parmigiani
G
,
Samur
MK
,
Munshi
NC
.
Chromatin remodeling and associated changes in gene expression induced by bone marrow stromal cells identify features of high-risk multiple myeloma [abstract]
.
Blood
.
2021
;
138
(
suppl 1
). Abstract 2672.
86.
de Jong
MME
,
Kellermayer
Z
,
Papazian
N
, et al
.
The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape
.
Nat Immunol
.
2021
;
22
(
6
):
769
-
780
.
87.
Tirier
SM
,
Mallm
J-P
,
Steiger
S
, et al
.
Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics
.
Nat Commun
.
2021
;
12
(
1
):
6960
.
88.
Chauhan
D
,
Singh
AV
,
Brahmandam
M
, et al
.
Functional Interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target
.
Cancer Cell
.
2009
;
16
(
4
):
309
-
323
.
89.
Robinson
H
,
Villa
N
,
Jaye
DL
, et al
.
Tumor-immune architecture and the regulation of antigen-specific T-cell infiltration in multiple myeloma and premalignant plasma cell disorders [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
244
-
245
.
90.
Sklavenitis-Pistofidis
R
,
Aranha
MP
,
Redd
RA
, et al
.
Immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma
.
Cancer Cell
.
2022
;
40
(
11
):
1358
-
1373.e8
.
91.
Pilcher
W
,
Thomas
BE
,
Bhasin
SS
, et al
.
Cross center single-cell RNA sequencing study of the immune microenvironment in rapid progressing multiple myeloma
.
NPJ Genom Med
.
2023
;
8
(
1
):
3
.
92.
Liang
Y
,
He
H
,
Wang
W
, et al
.
Malignant clonal evolution drives multiple myeloma cellular ecological diversity and microenvironment reprogramming
.
Mol Cancer
.
2022
;
21
(
1
):
182
.
93.
Samur
MK
,
Roncador
M
,
Aktas Samur
A
, et al
.
High-dose melphalan treatment significantly increases mutational burden at relapse in multiple myeloma
.
Blood
.
2023
;
141
(
14
):
1724
-
1736
.
94.
Ginhoux
F
,
Yalin
A
,
Dutertre
CA
,
Amit
I
.
Single-cell immunology: past, present, and future
.
Immunity
.
2022
;
55
(
3
):
393
-
404
.
95.
Yao
L
,
Jayasinghe
RG
,
Lee
BH
, et al
.
Comprehensive characterization of the multiple myeloma immune microenvironment using integrated scRNA-seq, CyTOF, and CITE-seq analysis
.
Cancer Res Commun
.
2022
;
2
(
10
):
1255
-
1265
.
96.
Boiarsky
R
,
Haradhvala
NJ
,
Alberge
J-B
, et al
.
Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis
.
Nat Commun
.
2022
;
13
(
1
):
7040
.
97.
Tsuji
J
,
Lightbody
ED
,
Sklavenitis-Pistofidis
R
, et al
.
Single-cell RNA-sequencing of 245 tumor samples from patients with MGUS and smoldering multiple myeloma reveals novel insights into malignant plasma cell biology [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
254
-
255
.
98.
Boiarsky
R
,
Haradhvala
NJ
,
Alberge
JB
, et al
.
Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis
.
Nat Commun
.
2022
;
13
(
1
):
7040
.
99.
Vandereyken
K
,
Sifrim
A
,
Thienpont
B
,
Voet
T
.
Methods and applications for single-cell and spatial multi-omics
.
Nat Rev Genet
.
Published online 2 March 2023
https://www.nature.com/articles/s41576-023-00580-2.
100.
Marx
V
.
How single-cell multi-omics builds relationships
.
Nat Methods
.
2022
;
19
(
2
):
142
-
146
.
101.
Rao
A
,
Barkley
D
,
França
GS
,
Yanai
I
.
Exploring tissue architecture using spatial transcriptomics
.
Nature
.
2021
;
596
(
7871
):
211
-
220
.
102.
Dhodapkar
KM
,
Cohen
AD
,
Kaushal
A
, et al
.
Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma
.
Blood Cancer Discov
.
2022
;
3
(
6
):
490
-
501
.
103.
Kehl
N
,
Kilian
M
,
Michel
J
, et al
.
IgE type multiple myeloma exhibits hypermutated phenotype and tumor reactive T cells
.
J Immunother Cancer
.
2022
;
10
(
10
):
e005815
.
104.
Gao
T
,
Soldatov
R
,
Sarkar
H
, et al
.
Haplotype-aware analysis of somatic copy number variations from single-cell transcriptomes
.
Nat Biotechnol
.
2023
;
41
(
3
):
417
-
426
.
105.
Welters
C
,
Lammoglia Cobo
MF
,
Stein
CA
, et al
.
Immune phenotypes and target antigens of clonally expanded bone marrow T cells in treatment-naive multiple myeloma
.
Cancer Immunol Res
.
2022
;
10
(
11
):
1407
-
1419
.
106.
Yao
L
,
Jayasinghe
RG
,
Lee
BH
, et al
.
Comprehensive characterization of the multiple myeloma immune microenvironment using integrated scRNA-seq, CyTOF, and CITE-seq Analysis
.
Cancer Res Commun
.
2022
;
2
(
10
):
1255
-
1265
.
107.
Kumar
H
,
Mazumder
S
,
Sharma
N
, et al
.
Single-cell proteomics and tumor RNAseq identify novel pathways associated with clofazimine sensitivity in PI- and IMiD- resistant myeloma, and putative stem-like cells
.
Front Oncol
.
2022
;
12
:
842200
.
108.
Croucher
DC
,
Richards
LM
,
Tsofack
SP
, et al
.
Longitudinal single-cell analysis of a myeloma mouse model identifies subclonal molecular programs associated with progression
.
Nat Commun
.
2021
;
12
(
1
):
6322
.
109.
Cho
H
,
Kim
KH
,
Lee
H
, et al
.
Adaptive natural killer cells facilitate effector functions of daratumumab in multiple myeloma
.
Clin Cancer Res
.
2021
;
27
(
10
):
2947
-
2958
.
110.
Teh
CE
,
Gong
JN
,
Segal
D
, et al
.
Deep profiling of apoptotic pathways with mass cytometry identifies a synergistic drug combination for killing myeloma cells
.
Cell Death Differ
.
2020
;
27
(
7
):
2217
-
2233
.
111.
Jang
JS
,
Li
Y
,
Mitra
AK
, et al
.
Molecular signatures of multiple myeloma progression through single cell RNA-Seq
.
Blood Cancer J
.
2019
;
9
(
1
):
2
.
112.
Kourelis
TV
,
Villasboas
JC
,
Jessen
E
, et al
.
Mass cytometry dissects T cell heterogeneity in the immune tumor microenvironment of common dysproteinemias at diagnosis and after first line therapies
.
Blood Cancer J
.
2019
;
9
(
9
):
72
.
113.
Hansmann
L
,
Blum
L
,
Ju
CH
,
Liedtke
M
,
Robinson
WH
,
Davis
MM
.
Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma
.
Cancer Immunol Res
.
2015
;
3
(
6
):
650
-
660
.
You do not currently have access to this content.
Sign in via your Institution