• Using hospital data, we developed a deep-learning platelet transfusion predictor that forecasts personalized patient risk within 24 hours.

  • Deep learning–based prediction performed best in patients with hematologic cancers with an AUC-PR of 0.84 and an ROC-AUC of 0.98.

Abstract

Platelet demand management (PDM) is a resource-consuming task for physicians and transfusion managers of large hospitals. Inpatient numbers and institutional standards play significant roles in PDM. However, reliance on these factors alone commonly results in platelet shortages. Using data from multiple sources, we developed, validated, tested, and implemented a patient-specific approach to support PDM that uses a deep learning–based risk score to forecast platelet transfusions for each hospitalized patient in the next 24 hours. The models were developed using retrospective electronic health record data of 34 809 patients treated between 2017 and 2022. Static and time-dependent features included demographics, diagnoses, procedures, blood counts, past transfusions, hematotoxic medications, and hospitalization duration. Using an expanding window approach, we created a training and live-prediction pipeline with a 30-day input and 24-hour forecast. Hyperparameter tuning determined the best validation area under the precision-recall curve (AUC-PR) score for long short-term memory deep learning models, which were then tested on independent data sets from the same hospital. The model tailored for hematology and oncology patients exhibited the best performance (AUC-PR, 0.84; area under the receiver operating characteristic curve [ROC-AUC], 0.98), followed by a multispecialty model covering all other patients (AUC-PR, 0.73). The model specific to cardiothoracic surgery had the lowest performance (AUC-PR, 0.42), likely because of unexpected intrasurgery bleedings. To our knowledge, this is the first deep learning–based platelet transfusion predictor enabling individualized 24-hour risk assessments at high AUC-PR. Implemented as a decision-support system, deep-learning forecasts might improve patient care by detecting platelet demand earlier and preventing critical transfusion shortages.

1.
Estcourt
LJ
.
Why has demand for platelet components increased? A review
.
Transfus Med
.
2014
;
24
(
5
):
260
-
268
.
2.
Flint
AW
,
McQuilten
ZK
,
Irwin
G
,
Rushford
K
,
Haysom
HE
,
Wood
EM
.
Is platelet expiring out of date? A systematic review
.
Transfus Med Rev
.
2020
;
34
(
1
):
42
-
50
.
3.
Schilling
M
,
Rickmann
L
,
Hutschenreuter
G
,
Spreckelsen
C
.
Reduction of platelet outdating and shortage by forecasting demand with statistical learning and deep neural networks: modeling study
.
JMIR Med Inform
.
2022
;
10
(
2
):
e29978
.
4.
Fanoodi
B
,
Malmir
B
,
Jahantigh
FF
.
Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models
.
Comput Biol Med
.
2019
;
113
:
103415
.
5.
Motamedi
M
,
Li
N
,
Down
DG
,
Heddle
NM
.
Demand forecasting for platelet usage: from univariate time series to multivariate models
.
arXiv
.
Preprint posted online 23 December 2022
.
6.
Perelman
I
,
Fergusson
D
,
Lampron
J
, et al
.
Exploring peaks in hospital blood component utilization: a 10-year retrospective study at a large multisite academic centre
.
Transfus Med Rev
.
2021
;
35
(
1
):
37
-
45
.
7.
Sutton
RT
,
Pincock
D
,
Baumgart
DC
,
Sadowski
DC
,
Fedorak
RN
,
Kroeker
KI
.
An overview of clinical decision support systems: benefits, risks, and strategies for success
.
NPJ Digit Med
.
2020
;
3
(
1
). 17-10.
8.
Kwan
JL
,
Lo
L
,
Ferguson
J
, et al
.
Computerised clinical decision support systems and absolute improvements in care: meta-analysis of controlled clinical trials
.
BMJ
.
2020
;
370
:
m3216
.
9.
LeCun
Y
,
Bengio
Y
,
Hinton
G
.
Deep learning
.
Nature
.
2015
;
521
(
7553
):
436
-
444
.
10.
Bender
D
,
Sartipi
K
.
HL7 FHIR: an agile and RESTful approach to healthcare information exchange
.
Proc IEEE Symp Comput-Based Med
.
2013
:
326
-
331
.
11.
Hosch
R
,
Baldini
G
,
Parmar
V
, et al
.
FHIR-PYrate: a data science friendly Python package to query FHIR servers
.
BMC Health Serv Res
.
2023
;
23
(
1
):
734
-
749
.
12.
Daly
ME
.
Determinants of platelet count in humans
.
Haematologica
.
2011
;
96
(
1
):
10
-
13
.
13.
Querschnitts-Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten: Gesamtnovelle 2020
.
Deutscher Ärzteverlag
;
2021
.
14.
Kaufman
RM
,
Djulbegovic
B
,
Gernsheimer
T
, et al
.
Platelet transfusion: a clinical practice guideline from the AABB
.
Ann Intern Med
.
2015
;
162
(
3
):
205
-
213
.
15.
Garg
R
,
Barpanda
S
,
Salanke
GRSN
,
Ramya
S
.
Machine learning algorithms for time series analysis and forecasting
.
arXiv
.
Preprint posted online 25 November 2022
.
16.
Lehmann
R
.
Forecasting exports across Europe: what are the superior survey indicators?
.
Empir Econ
.
2021
;
60
(
5
):
2429
-
2453
.
17.
Sharma
S
,
Sharma
S
,
Athaiya
A
.
Activation functions in neural networks
.
Int. J. Eng. Appl. Sci. Technol
.
2020
;
04
(
12
):
310
-
316
.
18.
Abadi
M
,
Agarwal
A
,
Paul
B
, et al
.
TensorFlow: large-scale machine learning on heterogeneous systems
. Accessed 14 February 2023. https://www.tensorflow.org/.
19.
Chollet
F
.
Keras
. 2015. Accessed 14 February 2023. https://keras.io.
20.
Biewald
L
.
Experiment tracking with weights and biases
. 2020. Accessed 14 February 2023. https://www.wandb.com/.
21.
Kingma
DP
,
Ba
J
.
Adam: a method for stochastic optimization
.
arXiv
.
Preprint posted online 30 January 2017
.
22.
Loshchilov
I
,
Hutter
F
.
Decoupled weight decay regularization
.
arXiv
.
Preprint posted online 4 January 2019
.
23.
Yao
Y
,
Rosasco
L
,
Caponnetto
A
.
On early stopping in gradient descent learning
.
Constr Approx
.
2007
;
26
(
2
):
289
-
315
.
24.
Li
L
,
Jamieson
K
,
DeSalvo
G
,
Rostamizadeh
A
,
Talwalkar
A
.
Hyperband: a novel bandit-based approach to hyperparameter optimization
.
J. Mach. Learn. Res
.
2017
;
18
(
1
):
6765
-
6816
.
25.
Snoek
J
,
Larochelle
H
,
Adams
RP
.
Practical bayesian optimization of machine learning algorithms
.
Adv Neural Inf Process Syst
.
2012
;
25
(
1
):
2951
-
2959
.
26.
Foret
P
,
Kleiner
A
,
Mobahi
H
,
Neyshabur
B
.
Sharpness-aware minimization for efficiently improving generalization
.
arXiv
.
Preprint posted online 29 April 2021
.
27.
Arlot
S
,
Celisse
A
.
A survey of cross-validation procedures for model selection
.
Stat Surv
.
2010
;
4
:
40
-
79
.
28.
Kuhn
M
,
Johnson
K
. Applied Predictive Modeling.
Springer
;
2013
.
29.
Lemaitre
G
,
Fan
T
,
Grisel
O
, et al
.
sklearn.metrics.precision_recall_curve. Scikit-Learn
. Accessed 14 February 2023. https://scikit-learn/stable/modules/generated/sklearn.metrics.precision_recall_curve.html.
30.
Lipton
ZC
,
Elkan
C
,
Naryanaswamy
B
.
Optimal thresholding of classifiers to maximize F1 measure
.
Mach Learn Knowl Discov Databases
.
2014
;
8725
:
225
-
239
.
31.
Ribeiro
MT
,
Singh
S
,
Guestrin
C
.
“Why should I trust you?”: explaining the predictions of any classifier
.
Proc ACM SIGKDD Int Conf Knowl Discov Data Min
.
2016
:
1135
-
1144
.
32.
Chen
T
,
Guestrin
C
.
XGBoost: a scalable tree boosting system
.
Proc ACM SIGKDD Int Conf Knowl Discov Data Min
.
2016
:
785
-
794
.
33.
Breiman
L
.
Random forests
.
Mach Learn
.
2001
;
45
(
1
):
5
-
32
.
34.
Global status report on blood safety and availability 2021
.
World Health Organization
;
2022
.
35.
Engelke
M
,
Brieske
CM
,
Parmar
V
, et al
.
Predicting individual patient platelet demand in a large tertiary care hospital using machine learning
.
Transfus Med Hemother
.
2023
;
50
(
4
):
277
-
285
.
36.
Stein
DM
,
Upperman
JS
,
Livingston
DH
, et al
.
National blood shortage: a call to action from the trauma community
.
J Trauma Acute Care Surg
.
2022
;
93
(
3
):
e119
-
e122
.
37.
McGann
PT
,
Weyand
AC
.
Lessons learned from the COVID-19 pandemic blood supply crisis
.
J Hosp Med
.
2022
;
17
(
7
):
574
-
576
.
You do not currently have access to this content.
Sign in via your Institution