• HEXIM1 regulates erythroid proliferation and fetal globin expression in a positive transcription factor β–dependent manner.

  • GATA1 co-occupancy determines whether HEXIM1 functions as an activator or a repressor at specific loci.

Abstract

Regulation of RNA polymerase II (RNAPII) activity is an essential process that governs gene expression; however, its contribution to the fundamental process of erythropoiesis remains unclear. hexamethylene bis-acetamide inducible 1 (HEXIM1) regulates RNAPII activity by controlling the location and activity of positive transcription factor β. We identified a key role for HEXIM1 in controlling erythroid gene expression and function, with overexpression of HEXIM1 promoting erythroid proliferation and fetal globin expression. HEXIM1 regulated erythroid proliferation by enforcing RNAPII pausing at cell cycle check point genes and increasing RNAPII occupancy at genes that promote cycle progression. Genome-wide profiling of HEXIM1 revealed that it was increased at both repressed and activated genes. Surprisingly, there were also genome-wide changes in the distribution of GATA-binding factor 1 (GATA1) and RNAPII. The most dramatic changes occurred at the β-globin loci, where there was loss of RNAPII and GATA1 at β-globin and gain of these factors at γ-globin. This resulted in increased expression of fetal globin, and BGLT3, a long noncoding RNA in the β-globin locus that regulates fetal globin expression. GATA1 was a key determinant of the ability of HEXIM1 to repress or activate gene expression. Genes that gained both HEXIM1 and GATA1 had increased RNAPII and increased gene expression, whereas genes that gained HEXIM1 but lost GATA1 had an increase in RNAPII pausing and decreased expression. Together, our findings reveal a central role for universal transcription machinery in regulating key aspects of erythropoiesis, including cell cycle progression and fetal gene expression, which could be exploited for therapeutic benefit.

1.
Murphy
Z
,
Murphy
K
,
Myers
JA
, et al
.
Regulation of RNA polymerase II activity is essential for terminal erythroid maturation
.
Blood
.
2021
;
138
(
18
):
1740
-
1756
.
2.
Cantor
AB
,
Orkin
SH
.
Transcriptional regulation of erythropoiesis: an affair involving multiple partners
.
Oncogene
.
2002
;
21
(
21
):
3368
-
3376
.
3.
Wells
M
,
Steiner
L
.
Epigenetic and transcriptional control of erythropoiesis
.
Front Genet
.
2022
;
13
:
805265
.
4.
Rahl
PB
,
Lin
CY
,
Seila
AC
, et al
.
c-Myc regulates transcriptional pause release
.
Cell
.
2010
;
141
(
3
):
432
-
445
.
5.
Zhou
Q
,
Chang
H
,
Zhang
H
,
Han
Y
,
Liu
H
.
RNA polymerase II elongation control
.
Diagn Pathol
.
2012
;
7
:
119
-
143
.
6.
Heidemann
M
,
Hintermair
C
,
Voß
K
,
Eick
D
.
Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription
.
Biochim Biophys Acta
.
2013
;
1829
(
1
):
55
-
62
.
7.
Liu
X
,
Kraus
WL
,
Bai
X
.
Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways
.
Trends Biochem Sci
.
2015
;
40
(
9
):
516
-
525
.
8.
Michels
AA
,
Fraldi
A
,
Li
Q
, et al
.
Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor
.
EMBO J
.
2004
;
23
(
13
):
2608
-
2619
.
9.
Peterlin
BM
,
Brogie
JE
,
Price
DH
.
7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription
.
Wiley Interdiscip Rev RNA
.
2012
;
3
(
1
):
92
-
103
.
10.
Diribarne
G
,
Bensaude
O
.
7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor
.
RNA Biol
.
2009
;
6
(
2
):
122
-
128
.
11.
Peterlin
BM
,
Price
DH
.
Controlling the elongation phase of transcription with P-TEFb
.
Mol Cell
.
2006
;
23
(
3
):
297
-
305
.
12.
McNamara
RP
,
Reeder
JE
,
McMillan
EA
,
Bacon
CW
,
McCann
JL
,
D'Orso
I
.
KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II
.
Mol Cell
.
2016
;
61
(
1
):
39
-
53
.
13.
McNamara
RP
,
Guzman
C
,
Reeder
JE
,
D'Orso
I
.
Genome-wide analysis of KAP1, the 7SK snRNP complex, and RNA polymerase II
.
Genom Data
.
2016
;
7
:
250
-
255
.
14.
Bunch
H
,
Choe
H
,
Kim
J
, et al
.
P-TEFb regulates transcriptional activation in non-coding RNA genes
.
Front Genet
.
2019
;
10
:
342
.
15.
Lloyd
SM
,
Leon
DB
,
Brady
MO
, et al
.
CDK9 activity switch associated with AFF1 and HEXIM1 controls differentiation initiation from epidermal progenitors
.
Nat Commun
.
2022
;
13
(
1
):
4408
.
16.
Tan
JL
,
Fogley
RD
,
Flynn
RA
, et al
.
Stress from nucleotide depletion activates the transcriptional regulator HEXIM1 to suppress melanoma
.
Mol Cell
.
2016
;
62
(
1
):
34
-
46
.
17.
Hu
G
,
Schones
DE
,
Cui
K
, et al
.
Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1
.
Genome Res
.
2011
;
21
(
10
):
1650
-
1658
.
18.
Boyes
J
,
Omichinski
J
,
Clark
D
,
Pikaart
M
,
Felsenfeld
G
.
Perturbation of nucleosome structure by the erythroid transcription factor GATA-1
.
J Mol Biol
.
1998
;
279
(
3
):
529
-
544
.
19.
Kim
SI
,
Bultman
SJ
,
Kiefer
CM
,
Dean
A
,
Bresnick
EH
.
BRG1 requirement for long-range interaction of a locus control region with a downstream promoter
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
7
):
2259
-
2264
.
20.
Papadopoulos
P
,
Gutierrez
L
,
Demmers
J
, et al
.
TAF10 interacts with the GATA1 transcription factor and controls mouse erythropoiesis
.
Mol Cell Biol
.
2015
;
35
(
12
):
2103
-
2118
.
21.
Gutierrez
L
,
Tsukamoto
S
,
Suzuki
M
, et al
.
Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis
.
Blood
.
2008
;
111
(
8
):
4375
-
4385
.
22.
Pevny
L
,
Simon
MC
,
Robertson
E
, et al
.
Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1
.
Nature
.
1991
;
349
(
6306
):
257
-
260
.
23.
Fujiwara
Y
,
Browne
CP
,
Cunniff
K
,
Goff
SC
,
Orkin
SH
.
Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1
.
Proc Natl Acad Sci U S A
.
1996
;
93
(
22
):
12355
-
12358
.
24.
Kingsley
PD
,
Greenfest-Allen
E
,
Frame
JM
, et al
.
Ontogeny of erythroid gene expression
.
Blood
.
2013
;
121
(
6
):
e5
-
e13
.
25.
Steinberg
MH
.
Fetal hemoglobin in sickle hemoglobinopathies: high HbF genotypes and phenotypes
.
J Clin Med
.
2020
;
9
(
11
):
3782
.
26.
Murphy
ZC
,
Getman
MR
,
Myers
JA
, et al
.
Codanin-1 mutations engineered in human erythroid cells demonstrate role of CDAN1 in terminal erythroid maturation
.
Exp Hematol
.
2020
;
91
:
32
-
38.e6
.
27.
Gautier
EF
,
Ducamp
S
,
Leduc
M
, et al
.
Comprehensive proteomic analysis of human erythropoiesis
.
Cell Rep
.
2016
;
16
(
5
):
1470
-
1484
.
28.
Liu
N
,
Hargreaves
VV
,
Zhu
Q
, et al
.
Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch
.
Cell
.
2018
;
173
(
2
):
430
-
442.e17
.
29.
Kurita
R
,
Suda
N
,
Sudo
K
, et al
.
Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells
.
PLoS One
.
2013
;
8
(
3
):
e59890
.
30.
Mbonye
UR
,
Wang
B
,
Gokulrangan
G
,
Chance
MR
,
Karn
J
.
Phosphorylation of HEXIM1 at Tyr271 and Tyr274 promotes release of P-TEFb from the 7SK snRNP complex and enhances proviral HIV gene expression
.
Proteomics
.
2015
;
15
(
12
):
2078
-
2086
.
31.
Bagger
FO
,
Kinalis
S
,
Rapin
N
.
BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D881
-
D885
.
32.
Liu
N
,
Xu
S
,
Yao
Q
, et al
.
Transcription factor competition at the gamma-globin promoters controls hemoglobin switching
.
Nat Genet
.
2021
;
53
(
4
):
511
-
520
.
33.
Olson
CM
,
Jiang
B
,
Erb
MA
, et al
.
Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation
.
Nat Chem Biol
.
2018
;
14
(
2
):
163
-
170
.
34.
Minzel
W
,
Venkatachalam
A
,
Fink
A
, et al
.
Small molecules co-targeting CKIalpha and the transcriptional kinases CDK7/9 control AML in preclinical models
.
Cell
.
2018
;
175
(
1
):
171
-
185.e25
.
35.
Skene
PJ
,
Henikoff
S
.
An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites
.
Elife
.
2017
;
6
:
e21856
.
36.
Day
DS
,
Zhang
B
,
Stevens
SM
, et al
.
Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types
.
Genome Biol
.
2016
;
17
(
1
):
120
.
37.
Ivaldi
MS
,
Diaz
LF
,
Chakalova
L
,
Lee
J
,
Krivega
I
,
Dean
A
.
Fetal gamma-globin genes are regulated by the BGLT3 long noncoding RNA locus
.
Blood
.
2018
;
132
(
18
):
1963
-
1973
.
38.
Sankaran
VG
,
Ludwig
LS
,
Sicinska
E
, et al
.
Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number
.
Genes Dev
.
2012
;
26
(
18
):
2075
-
2087
.
39.
Bauer
DE
,
Kamran
SC
,
Lessard
S
, et al
.
An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level
.
Science
.
2013
;
342
(
6155
):
253
-
257
.
40.
Psatha
N
,
Reik
A
,
Phelps
S
, et al
.
Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with beta-thalassemia major
.
Mol Ther Methods Clin Dev
.
2018
;
10
:
313
-
326
.
41.
Crossley
M
,
Orkin
SH
.
Phosphorylation of the erythroid transcription factor GATA-1
.
J Biol Chem
.
1994
;
269
(
24
):
16589
-
16596
.
42.
Hetzer
B
,
Meryk
A
,
Kropshofer
G
, et al
.
An R307H substitution in GATA1 that prevents Ser310 phosphorylation causes severe fetal anemia
.
Blood Adv
.
2022
;
6
(
14
):
4330
-
4334
.
43.
Rooke
HM
,
Orkin
SH
.
Phosphorylation of Gata1 at serine residues 72, 142, and 310 is not essential for hematopoiesis in vivo
.
Blood
.
2006
;
107
(
9
):
3527
-
3530
.
44.
Lin
KR
,
Li
CL
,
Yen
JJ
,
Yang-Yen
HF
.
Constitutive phosphorylation of GATA-1 at serine(2)(6) attenuates the colony-forming activity of erythrocyte-committed progenitors
.
PLoS One
.
2013
;
8
(
5
):
e64269
.
45.
Sanso
M
,
Levin
RS
,
Lipp
JJ
, et al
.
P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates
.
Genes Dev
.
2016
;
30
(
1
):
117
-
131
.
46.
Decker
TM
,
Forne
I
,
Straub
T
, et al
.
Analog-sensitive cell line identifies cellular substrates of CDK9
.
Oncotarget
.
2019
;
10
(
65
):
6934
-
6943
.
47.
Core
L
,
Adelman
K
.
Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation
.
Genes Dev
.
2019
;
33
(
15-16
):
960
-
982
.
48.
Wu
W
,
Cheng
Y
,
Keller
CA
, et al
.
Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration
.
Genome Res
.
2011
;
21
(
10
):
1659
-
1671
.
49.
Cheng
Y
,
Wu
W
,
Kumar
SA
, et al
.
Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression
.
Genome Res
.
2009
;
19
(
12
):
2172
-
2184
.
50.
He
N
,
Pezda
AC
,
Zhou
Q
.
Modulation of a P-TEFb functional equilibrium for the global control of cell growth and differentiation
.
Mol Cell Biol
.
2006
;
26
(
19
):
7068
-
7076
.
51.
Huang
F
,
Nguyen
TT
,
Echeverria
I
, et al
.
Reversible phosphorylation of cyclin T1 promotes assembly and stability of P-TEFb
.
Elife
.
2021
;
10
:
e68473
.
52.
Elagib
KE
,
Mihaylov
IS
,
Delehanty
LL
, et al
.
Cross-talk of GATA-1 and P-TEFb in megakaryocyte differentiation
.
Blood
.
2008
;
112
(
13
):
4884
-
4894
.
53.
Palis
J
.
Primitive and definitive erythropoiesis in mammals
.
Front Physiol
.
2014
;
5
:
3
.
54.
Paulson
RF
,
Ruan
B
,
Hao
S
,
Chen
Y
.
Stress erythropoiesis is a key inflammatory response
.
Cells
.
2020
;
9
(
3
):
634
.
55.
Xiang
J
,
Wu
DC
,
Chen
Y
,
Paulson
RF
.
In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors
.
Blood
.
2015
;
125
(
11
):
1803
-
1812
.
56.
Paulson
RF
,
Hariharan
S
,
Little
JA
.
Stress erythropoiesis: definitions and models for its study
.
Exp Hematol
.
2020
;
89
:
43
-
54.e2
.
You do not currently have access to this content.
Sign in via your Institution