• Clinically available antibodies armed with B-BiTE successfully activated both human T cells and NK cells for myeloma cells.

  • Immunotherapy using 2 new different B-BiTE–based bispecifics induced deep and durable responses via dual-lymphoid activation for myeloma.

Immunotherapy using bispecific antibodies including bispecific T-cell engager (BiTE) has the potential to enhance the efficacy of treatment for relapsed/refractory multiple myeloma. However, myeloma may still recur after treatment because of downregulation of a target antigen and/or myeloma cell heterogeneity. To strengthen immunotherapy for myeloma while overcoming its characteristics, we have newly developed a BiTE-based modality, referred to as bridging-BiTE (B-BiTE). B-BiTE was able to bind to both a human immunoglobulin G–Fc domain and the CD3 molecule. Clinically available monoclonal antibodies (mAbs) were bound with B-BiTE before administration, and the mAb/B-BiTE complex induced antitumor T-cell responses successfully while preserving and supporting natural killer cell reactivity, resulting in enhanced antimyeloma effects via dual-lymphoid activation. In contrast, any unwanted off-target immune-cell reactivity mediated by mAb/B-BiTE complexes or B-BiTE itself appeared not to be observed in vitro and in vivo. Importantly, sequential immunotherapy using 2 different mAb/B-BiTE complexes appeared to circumvent myeloma cell antigen escape, and further augmented immune responses to myeloma relative to those induced by mAb/B-BiTE monotherapy or sequential therapy with 2 mAbs in the absence of B-BiTE. Therefore, this modality facilitates easy and prompt generation of a broad panel of bispecific antibodies that can induce deep and durable antitumor responses in the presence of clinically available mAbs, supporting further advancement of reinforced immunotherapy for multiple myeloma and other refractory hematologic malignancies.

1.
Anderson
KC
.
Progress and paradigms in multiple myeloma
.
Clin Cancer Res
.
2016
;
22
(
22
):
5419
-
5427
.
2.
Cowan
AJ
,
Green
DJ
,
Kwok
M
, et al
.
Diagnosis and management of multiple myeloma: a review
.
JAMA
.
2022
;
327
(
5
):
464
-
477
.
3.
Rajkumar
SV
,
Kumar
S
.
Multiple myeloma current treatment algorithms
.
Blood Cancer J
.
2020
;
10
(
9
):
94
.
4.
Binder
M
,
Nandakumar
B
,
Rajkumar
SV
, et al
.
Mortality trends in multiple myeloma after the introduction of novel therapies in the United States
.
Leukemia
.
2022
;
36
(
3
):
801
-
808
.
5.
Bolli
N
,
Avet-Loiseau
H
,
Wedge
DC
, et al
.
Heterogeneity of genomic evolution and mutational profiles in multiple myeloma
.
Nat Commun
.
2014
;
5
:
2997
.
6.
Rasche
L
,
Chavan
SS
,
Stephens
OW
, et al
.
Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing
.
Nat Commun
.
2017
;
8
(
1
):
268
.
7.
Ledergor
G
,
Weiner
A
,
Zada
M
, et al
.
Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma
.
Nat Med
.
2018
;
24
(
12
):
1867
-
1876
.
8.
Wallington-Beddoe
CT
,
Sobieraj-Teague
M
,
Kuss
BJ
,
Pitson
SM
.
Resistance to proteasome inhibitors and other targeted therapies in myeloma
.
Br J Haematol
.
2018
;
182
(
1
):
11
-
28
.
9.
Nijhof
IS
,
Casneuf
T
,
van Velzen
J
, et al
.
CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma
.
Blood
.
2016
;
128
(
7
):
959
-
970
.
10.
Krejcik
J
,
Frerichs
KA
,
Nijhof
IS
, et al
.
Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab
.
Clin Cancer Res
.
2017
;
23
(
24
):
7498
-
7511
.
11.
Keats
JJ
,
Chesi
M
,
Egan
JB
, et al
.
Clonal competition with alternating dominance in multiple myeloma
.
Blood
.
2012
;
120
(
5
):
1067
-
1076
.
12.
Munshi
NC
,
Anderson
LD
,
Shah
N
, et al
.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
13.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al
.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
14.
Mailankody
S
,
Devlin
SM
,
Landa
J
, et al
.
GPRC5D-targeted CAR T cells for myeloma
.
N Engl J Med
.
2022
;
387
(
13
):
1196
-
1206
.
15.
Topp
MS
,
Duell
J
,
Zugmaier
G
, et al
.
Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma
.
J Clin Oncol
.
2020
;
38
(
8
):
775
-
783
.
16.
Lancman
G
,
Sastow
DL
,
Cho
HJ
, et al
.
Bispecific antibodies in multiple myeloma: present and future
.
Blood Cancer Discov
.
2021
;
2
(
5
):
423
-
433
.
17.
Usmani
SZ
,
Garfall
AL
,
van de Donk
N
, et al
.
Teclistamab, a B-cell maturation antigen x CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study
.
Lancet
.
2021
;
398
(
10301
):
665
-
674
.
18.
Moreau
P
,
Garfall
AL
,
van de Donk
N
, et al
.
Teclistamab in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2022
;
387
(
6
):
495
-
505
.
19.
Subklewe
M
.
BiTEs better than CAR T cells
.
Blood Adv
.
2021
;
5
(
2
):
607
-
612
.
20.
Lejeune
M
,
Kose
MC
,
Duray
E
,
Einsele
H
,
Beguin
Y
,
Caers
J
.
Bispecific, T-cell-recruiting antibodies in B-cell malignancies
.
Front Immunol
.
2020
;
11
:
762
.
21.
Blanco
B
,
Dominguez-Alonso
C
,
Alvarez-Vallina
L
.
Bispecific immunomodulatory antibodies for cancer immunotherapy
.
Clin Cancer Res
.
2021
;
27
(
20
):
5457
-
5464
.
22.
Maruta
M
,
Ochi
T
,
Tanimoto
K
, et al
.
Direct comparison of target-reactivity and cross-reactivity induced by CAR- and BiTE-redirected T cells for the development of antibody-based T-cell therapy
.
Sci Rep
.
2019
;
9
(
1
):
13293
.
23.
Ochi
T
,
Maruta
M
,
Tanimoto
K
, et al
.
A single-chain antibody generation system yielding CAR-T cells with superior antitumor function
.
Commun Biol
.
2021
;
4
(
1
):
273
.
24.
Murin
CD
.
Considerations of antibody geometric constraints on NK cell antibody dependent cellular cytotoxicity
.
Front Immunol
.
2020
;
11
:
1635
.
25.
Wang
Z
,
Yin
C
,
Lum
LG
,
Simons
A
,
Weiner
GJ
.
Bispecific antibody-activated T cells enhance NK cell-mediated antibody-dependent cellular cytotoxicity
.
J Hematol Oncol
.
2021
;
14
(
1
):
204
.
26.
Moulin
B
,
Deret
S
,
Mariette
X
, et al
.
Nodular glomerulosclerosis with deposition of monoclonal immunoglobulin heavy chains lacking C(H)1
.
J Am Soc Nephrol
.
1999
;
10
(
3
):
519
-
528
.
27.
Shields
RL
,
Namenuk
AK
,
Hong
K
, et al
.
High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R
.
J Biol Chem
.
2001
;
276
(
9
):
6591
-
6604
.
28.
de Taeye
SW
,
Bentlage
AEH
,
Mebius
MM
, et al
.
FcγR binding and ADCC activity of human IgG allotypes
.
Front Immunol
.
2020
;
11
:
740
.
29.
Zeidler
R
,
Reisbach
G
,
Wollenberg
B
, et al
.
Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing
.
J Immunol
.
1999
;
163
(
3
):
1246
-
1252
.
30.
Goere
D
,
Flament
C
,
Rusakiewicz
S
, et al
.
Potent immunomodulatory effects of the trifunctional antibody catumaxomab
.
Cancer Res
.
2013
;
73
(
15
):
4663
-
4673
.
31.
Borlak
J
,
Langer
F
,
Spanel
R
,
Schondorfer
G
,
Dittrich
C
.
Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcγ receptors
.
Oncotarget
.
2016
;
7
(
19
):
28059
-
28074
.
32.
Ormhoj
M
,
Abken
H
,
Hadrup
SR
.
Engineering T-cells with chimeric antigen receptors to combat hematological cancers: an update on clinical trials
.
Cancer Immunol Immunother
.
2022
;
71
(
10
):
2301
-
2311
.
33.
Gogishvili
T
,
Danhof
S
,
Prommersberger
S
, et al
.
SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7(+) normal lymphocytes
.
Blood
.
2017
;
130
(
26
):
2838
-
2847
.
34.
van de Donk
N
,
Richardson
PG
,
Malavasi
F
.
CD38 antibodies in multiple myeloma: back to the future
.
Blood
.
2018
;
131
(
1
):
13
-
29
.
35.
Mei
H
,
Li
C
,
Jiang
H
, et al
.
A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma
.
J Hematol Oncol
.
2021
;
14
(
1
):
161
.
36.
Cui
Q
,
Qian
C
,
Xu
N
, et al
.
CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation
.
J Hematol Oncol
.
2021
;
14
(
1
):
82
.
37.
van de Donk
N
,
Themeli
M
,
Usmani
SZ
.
Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma
.
Blood Cancer Discov
.
2021
;
2
(
4
):
302
-
318
.
38.
Teoh
PJ
,
Chng
WJ
.
CAR T-cell therapy in multiple myeloma: more room for improvement
.
Blood Cancer J
.
2021
;
11
(
4
):
84
.
39.
Roex
G
,
Timmers
M
,
Wouters
K
, et al
.
Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma
.
J Hematol Oncol
.
2020
;
13
(
1
):
164
.
40.
Zhang
L
,
Shen
X
,
Yu
W
, et al
.
Comprehensive meta-analysis of anti-BCMA chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma
.
Ann Med
.
2021
;
53
(
1
):
1547
-
1559
.
41.
Bruno
B
,
Wasch
R
,
Engelhardt
M
, et al
.
European Myeloma Network perspective on CAR T-cell therapies for multiple myeloma
.
Haematologica
.
2021
;
106
(
8
):
2054
-
2065
.
42.
Martin
T
,
Usmani
SZ
,
Schecter
JM
, et al
.
Matching-adjusted indirect comparison of efficacy outcomes for ciltacabtagene autoleucel in CARTITUDE-1 versus idecabtagene vicleucel in KarMMa for the treatment of patients with relapsed or refractory multiple myeloma
.
Curr Med Res Opin
.
2021
;
37
(
10
):
1779
-
1788
.
43.
Tang
Y
,
Yin
H
,
Zhao
X
, et al
.
High efficacy and safety of CD38 and BCMA bispecific CAR-T in relapsed or refractory multiple myeloma
.
J Exp Clin Cancer Res
.
2022
;
41
(
1
):
2
.
44.
Zah
E
,
Nam
E
,
Bhuvan
V
, et al
.
Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
2283
.
45.
Fernández de Larrea
C
,
Staehr
M
,
Lopez
AV
, et al
.
Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent BCMA escape-driven relapse in multiple myeloma
.
Blood Cancer Discov
.
2020
;
1
(
2
):
146
-
154
.
46.
Samur
MK
,
Fulciniti
M
,
Aktas Samur
A
, et al
.
Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma
.
Nat Commun
.
2021
;
12
(
1
):
868
.
47.
Afifi
S
,
Michael
A
,
Lesokhin
A
.
Immunotherapy: a new approach to treating multiple myeloma with daratumumab and elotuzumab
.
Ann Pharmacother
.
2016
;
50
(
7
):
555
-
568
.
48.
Ishibashi
M
,
Soeda
S
,
Sasaki
M
, et al
.
Clinical impact of serum soluble SLAMF7 in multiple myeloma
.
Oncotarget
.
2018
;
9
(
78
):
34784
-
34793
.
49.
Meermeier
EW
,
Welsh
SJ
,
Sharik
ME
, et al
.
Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy
.
Blood Cancer Discov
.
2021
;
2
(
4
):
354
-
369
.
50.
Wang
X
,
Walter
M
,
Urak
R
, et al
.
Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma
.
Clin Cancer Res
.
2018
;
24
(
1
):
106
-
119
.
51.
Works
M
,
Soni
N
,
Hauskins
C
, et al
.
Anti-B-cell maturation antigen chimeric antigen receptor T cell function against multiple myeloma is enhanced in the presence of lenalidomide
.
Mol Cancer Ther
.
2019
;
18
(
12
):
2246
-
2257
.
52.
Cho
SF
,
Lin
L
,
Xing
L
, et al
.
The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models
.
Blood Adv
.
2020
;
4
(
17
):
4195
-
4207
.
53.
Garcia-Guerrero
E
,
Gotz
R
,
Doose
S
, et al
.
Upregulation of CD38 expression on multiple myeloma cells by novel HDAC6 inhibitors is a class effect and augments the efficacy of daratumumab
.
Leukemia
.
2021
;
35
(
1
):
201
-
214
.
54.
Mouhieddine
TH
,
Van Oekelen
O
,
Melnekoff
DT
, et al
.
Sequencing T-cell redirection therapies leads to deep and durable responses in patients with relapsed/refractory myeloma
.
Blood Adv
.
2023
;
7
(
6
):
1056
-
1064
.
55.
Reimer
CB
,
Phillips
DJ
,
Aloisio
CH
, et al
.
Evaluation of thirty-one mouse monoclonal antibodies to human IgG epitopes
.
Hybridoma
.
1984
;
3
(
3
):
263
-
275
.
56.
Jefferis
R
,
Reimer
CB
,
Skvaril
F
, et al
.
Evaluation of monoclonal antibodies having specificity for human IgG sub-classes: results of an IUIS/WHO collaborative study
.
Immunol Lett
.
1985
;
10
(
3-4
):
223
-
252
.
57.
Chen
L
,
Flies
DB
.
Molecular mechanisms of T cell co-stimulation and co-inhibition
.
Nat Rev Immunol
.
2013
;
13
(
4
):
227
-
242
.
You do not currently have access to this content.
Sign in via your Institution