• The iron chaperone PCBP1 is required in enterocytes to coordinate iron, direct it into ferritin, and limit its export via ferroportin.

  • Mice lacking PCBP1 in duodenal epithelium fail to properly regulate dietary iron absorption, exposing them to iron overload and deficiency.

Iron is an essential nutrient required by all cells but used primarily for red blood cell production. Because humans have no effective mechanism for ridding the body of excess iron, the absorption of dietary iron must be precisely regulated. The critical site of regulation is the transfer of iron from the absorptive enterocyte to the portal circulation via the sole iron efflux transporter, ferroportin. Here, we report that poly(rC)-binding protein 1 (PCBP1), the major cytosolic iron chaperone, is necessary for the regulation of iron flux through ferroportin in the intestine of mice. Mice lacking PCBP1 in the intestinal epithelium exhibit low levels of enterocyte iron, poor retention of dietary iron in enterocyte ferritin, and excess efflux of iron through ferroportin. Excess iron efflux occurred despite lower levels of ferroportin protein in enterocytes and upregulation of the iron regulatory hormone hepcidin. PCBP1 deletion and the resulting unregulated dietary iron absorption led to poor growth, severe anemia on a low-iron diet, and liver oxidative stress with iron loading on a high-iron diet. Ex vivo culture of PCBP1-depleted enteroids demonstrated no defects in hepcidin-mediated ferroportin turnover. However, measurement of kinetically labile iron pools in enteroids competent or blocked for iron efflux indicated that PCBP1 functioned to bind and retain cytosolic iron and limit its availability for ferroportin-mediated efflux. Thus, PCBP1 coordinates enterocyte iron and reduces the concentration of unchaperoned “free” iron to a low level that is necessary for hepcidin-mediated regulation of ferroportin activity.

1.
Coffey
R
,
Ganz
T
.
Iron homeostasis: an anthropocentric perspective
.
J Biol Chem
.
2017
;
292
(
31
):
12727
-
12734
.
2.
Katsarou
A
,
Pantopoulos
K
.
Basics and principles of cellular and systemic iron homeostasis
.
Mol Aspects Med
.
2020
;
75
:
100866
.
3.
Pasricha
SR
,
Tye-Din
J
,
Muckenthaler
MU
,
Swinkels
DW
.
Iron deficiency
.
Lancet
.
2021
;
397
(
10270
):
233
-
248
.
4.
Yanatori
I
,
Kishi
F
.
DMT1 and iron transport
.
Free Radic Biol Med
.
2019
;
133
:
55
-
63
.
5.
Gunshin
H
,
Mackenzie
B
,
Berger
UV
, et al
.
Cloning and characterization of a mammalian proton-coupled metal-ion transporter
.
Nature
.
1997
;
388
(
6641
):
482
-
488
.
6.
Romero
MF
,
Hediger
MA
,
Boulpaep
EL
,
Boron
WF
.
Expression cloning and characterization of a renal electrogenic Na+/HCO3- cotransporter
.
Nature
.
1997
;
387
(
6631
):
409
-
413
.
7.
Subramaniam
GRaVN
. Biology of the iron efflux transporter, ferroportin. In:
Donev
R
, eds.
Advances in Protein Chemistry and Structural Biology
.
2021
:
1
-
16
.
8.
Donovan
A
,
Brownlie
A
,
Zhou
Y
, et al
.
Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter
.
Nature
.
2000
;
403
(
6771
):
776
-
781
.
9.
Abboud
S
,
Haile
DJ
.
A novel mammalian iron-regulated protein involved in intracellular iron metabolism
.
J Biol Chem
.
2000
;
275
(
26
):
19906
-
19912
.
10.
McKie
AT
,
Marciani
P
,
Rolfs
A
, et al
.
A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation
.
Mol Cell
.
2000
;
5
(
2
):
299
-
309
.
11.
Wilkinson
N
,
Pantopoulos
K
.
The IRP/IRE system in vivo: insights from mouse models
.
Front Pharmacol
.
2014
;
5
:
176
.
12.
Shah
YM
,
Matsubara
T
,
Ito
S
,
Yim
SH
,
Gonzalez
FJ
.
Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency
.
Cell Metab
.
2009
;
9
(
2
):
152
-
164
.
13.
Drakesmith
H
,
Nemeth
E
,
Ganz
T
.
Ironing out ferroportin
.
Cell Metab
.
2015
;
22
(
5
):
777
-
787
.
14.
Nemeth
E
,
Tuttle
MS
,
Powelson
J
, et al
.
Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
.
Science
.
2004
;
306
(
5704
):
2090
-
2093
.
15.
Philpott
CC
,
Patel
SJ
,
Protchenko
O
.
Management versus miscues in the cytosolic labile iron pool: the varied functions of iron chaperones
.
Biochim Biophys Acta Mol Cell Res
.
2020
;
1867
(
11
):
118830
.
16.
Shi
H
,
Bencze
KZ
,
Stemmler
TL
,
Philpott
CC
.
A cytosolic iron chaperone that delivers iron to ferritin
.
Science
.
2008
;
320
(
5880
):
1207
-
1210
.
17.
Philpott
CC
,
Jadhav
S
.
The ins and outs of iron: escorting iron through the mammalian cytosol
.
Free Radic Biol Med
.
2019
;
133
:
112
-
117
.
18.
Ghanem
LR
,
Kromer
A
,
Silverman
IM
, et al
.
The Poly(C) binding protein Pcbp2 and its retrotransposed derivative Pcbp1 are independently essential to mouse development
.
Mol Cell Biol
.
2016
;
36
(
2
):
304
-
319
.
19.
Leidgens
S
,
Bullough
KZ
,
Shi
H
, et al
.
Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin
.
J Biol Chem
.
2013
;
288
(
24
):
17791
-
17802
.
20.
Nandal
A
,
Ruiz
JC
,
Subramanian
P
, et al
.
Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2
.
Cell Metab
.
2011
;
14
(
5
):
647
-
657
.
21.
Frey
AG
,
Nandal
A
,
Park
JH
, et al
.
Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
22
):
8031
-
8036
.
22.
Patel
SJ
,
Frey
AG
,
Palenchar
DJ
, et al
.
A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly
.
Nat Chem Biol
.
2019
;
15
(
9
):
872
-
881
.
23.
Ryu
MS
,
Zhang
D
,
Protchenko
O
,
Shakoury-Elizeh
M
,
Philpott
CC
.
PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis
.
J Clin Invest
.
2017
;
127
(
5
):
1786
-
1797
.
24.
Protchenko
O
,
Baratz
E
,
Jadhav
S
, et al
.
Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis
.
Hepatology
.
2021
;
73
(
3
):
1176
-
1193
.
25.
Jadhav
S
,
Protchenko
O
,
Li
F
, et al
.
Mitochondrial dysfunction in mouse livers depleted of iron chaperone PCBP1
.
Free Radic Biol Med
.
2021
;
175
:
18
-
27
.
26.
Conrad
M
,
Lorenz
SM
,
Proneth
B
.
Targeting ferroptosis: new hope for as-yet-incurable diseases
.
Trends Mol Med
.
2021
;
27
(
2
):
113
-
122
.
27.
Das
N
,
Xie
L
,
Ramakrishnan
SK
,
Campbell
A
,
Rivella
S
,
Shah
YM
.
Intestine-specific disruption of hypoxia-inducible factor (HIF)-2α improves anemia in sickle cell disease
.
J Biol Chem
.
2015
;
290
(
39
):
23523
-
23527
.
28.
Enns
CA
,
Ahmed
R
,
Wang
J
, et al
.
Increased iron loading induces Bmp6 expression in the non-parenchymal cells of the liver independent of the BMP-signaling pathway
.
PLoS One
.
2013
;
8
(
4
):
e60534
.
29.
Taylor
M
,
Qu
A
,
Anderson
ER
, et al
.
Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice
.
Gastroenterology
.
2011
;
140
(
7
):
2044
-
2055
.
30.
Ross
SL
,
Tran
L
,
Winters
A
, et al
.
Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT
.
Cell Metab
.
2012
;
15
(
6
):
905
-
917
.
31.
Shi
SR
,
Chaiwun
B
,
Young
L
,
Cote
RJ
,
Taylor
CR
.
Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections
.
J Histochem Cytochem
.
1993
;
41
(
11
):
1599
-
1604
.
32.
Shawki
A
,
Anthony
SR
,
Nose
Y
, et al
.
Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese
.
Am J Physiol Gastrointest Liver Physiol
.
2015
;
309
(
8
):
G635
-
G647
.
33.
Fiorito
V
,
Geninatti Crich
S
,
Silengo
L
,
Altruda
F
,
Aime
S
,
Tolosano
E
.
Assessment of iron absorption in mice by ICP-MS measurements of (57)Fe levels
.
Eur J Nutr
.
2012
;
51
(
7
):
783
-
789
.
34.
Preza
GC
,
Ruchala
P
,
Pinon
R
, et al
.
Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload
.
J Clin Invest
.
2011
;
121
(
12
):
4880
-
4888
.
35.
Ramos
E
,
Ruchala
P
,
Goodnough
JB
, et al
.
Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis
.
Blood
.
2012
;
120
(
18
):
3829
-
3836
.
36.
Volynets
V
,
Reichold
A
,
Bardos
G
,
Rings
A
,
Bleich
A
,
Bischoff
SC
.
Assessment of the intestinal barrier with five different permeability tests in healthy C57BL/6J and BALB/cJ mice
.
Dig Dis Sci
.
2016
;
61
(
3
):
737
-
746
.
37.
Chen
K
,
Liu
J
,
Heck
S
,
Chasis
JA
,
An
X
,
Mohandas
N
.
Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
41
):
17413
-
17418
.
38.
Koulnis
M
,
Pop
R
,
Porpiglia
E
,
Shearstone
JR
,
Hidalgo
D
,
Socolovsky
M
.
Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay
.
J Vis Exp
.
2011
(
54
):
2809
.
39.
Mahe
MM
,
Aihara
E
,
Schumacher
MA
, et al
.
Establishment of gastrointestinal epithelial organoids
.
Curr Protoc Mouse Biol
.
2013
;
3
(
4
):
217
-
240
.
40.
Pierson
H
,
Muchenditsi
A
,
Kim
BE
, et al
.
The function of ATPase copper transporter ATP7B in intestine
.
Gastroenterology
.
2018
;
154
(
1
):
168
-
180 e5
.
41.
Hirayama
T
,
Niwa
M
,
Hirosawa
S
,
Nagasawa
H
.
High-throughput screening for the discovery of iron homeostasis modulators using an extremely sensitive fluorescent probe
.
ACS Sens
.
2020
;
5
(
9
):
2950
-
2958
.
42.
el Marjou
F
,
Janssen
KP
,
Chang
BH
, et al
.
Tissue-specific and inducible Cre-mediated recombination in the gut epithelium
.
Genesis
.
2004
;
39
(
3
):
186
-
193
.
43.
Wong
VW
,
Stange
DE
,
Page
ME
, et al
.
Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling
.
Nat Cell Biol
.
2012
;
14
(
4
):
401
-
408
.
44.
Schwartz
AJ
,
Das
NK
,
Ramakrishnan
SK
, et al
.
Hepatic hepcidin/intestinal HIF-2alpha axis maintains iron absorption during iron deficiency and overload
.
J Clin Invest
.
2019
;
129
(
1
):
336
-
348
.
45.
Klaassen
CD
,
Reisman
SA
.
Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver
.
Toxicol Appl Pharmacol
.
2010
;
244
(
1
):
57
-
65
.
46.
Billesbolle
CB
,
Azumaya
CM
,
Kretsch
RC
, et al
.
Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms
.
Nature
.
2020
;
586
(
7831
):
807
-
811
.
47.
Sato
T
,
Vries
RG
,
Snippert
HJ
, et al
.
Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
.
Nature
.
2009
;
459
(
7244
):
262
-
265
.
48.
Sugimoto
S
,
Sato
T
.
Establishment of 3D intestinal organoid cultures from intestinal stem cells
.
Methods Mol Biol
.
2017
;
1612
:
97
-
105
.
49.
Zachos
NC
,
Kovbasnjuk
O
,
Foulke-Abel
J
, et al
.
Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology
.
J Biol Chem
.
2016
;
291
(
8
):
3759
-
3766
.
50.
Niwa
M
,
Hirayama
T
,
Okuda
K
,
Nagasawa
H
.
A new class of high-contrast Fe(II) selective fluorescent probes based on spirocyclized scaffolds for visualization of intracellular labile iron delivered by transferrin
.
Org Biomol Chem
.
2014
;
12
(
34
):
6590
-
6597
.
51.
Vanoaica
L
,
Darshan
D
,
Richman
L
,
Schümann
K
,
Kühn
LC
.
Intestinal ferritin H is required for an accurate control of iron absorption
.
Cell Metab
.
2010
;
12
(
3
):
273
-
282
.
52.
Vlasveld
LT
,
Janssen
R
,
Bardou-Jacquet
E
, et al
.
Twenty years of ferroportin disease: a review or an update of published clinical, biochemical, molecular, and functional features
.
Pharmaceuticals (Basel)
.
2019
;
12
(
3
):
132
.
53.
Patel
SJ
,
Protchenko
O
,
Shakoury-Elizeh
M
,
Baratz
E
,
Jadhav
S
,
Philpott
CC
.
The iron chaperone and nucleic acid-binding activities of poly(rC)-binding protein 1 are separable and independently essential
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
25
):
118
.
54.
Yanatori
I
,
Yasui
Y
,
Tabuchi
M
,
Kishi
F
.
Chaperone protein involved in transmembrane transport of iron
.
Biochem J
.
2014
;
462
(
1
):
25
-
37
.
55.
Yanatori
I
,
Richardson
DR
,
Imada
K
,
Kishi
F
.
Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2
.
J Biol Chem
.
2016
;
291
(
33
):
17303
-
17318
.
You do not currently have access to this content.
Sign in via your Institution