Given the shortcomings of current factor-, nonfactor-, and adeno-associated virus gene–based therapies, the recent advent of RNA-based therapeutics for hemophilia is changing the fundamental approach to hemophilia management. From small interfering RNA therapeutics that knockdown clot regulators antithrombin, protein S, and heparin cofactor II, to CRISPR/Cas9 gene editing that may personalize treatment, improved technologies have the potential to reduce bleeds and factor use and avoid inhibitor formation. These novel agents, some in preclinical studies and others in early phase trials, have the potential to simplify treatment and improve hemostasis and quality of life. Furthermore, because these therapies arise from manipulation of the coagulation cascade and thrombin generation and its regulation, they will enhance our understanding of hemostasis and thrombosis and ultimately lead to better therapies for children and adults with inherited bleeding disorders. What does the future hold? With the development of novel preclinical technologies at the bench, there will be fewer joint bleeds, debilitating joint disease, orthopedic surgery, and improved physical and mental health, which were not previously possible. In this review, we identify current limitations of treatment and progress in the development of novel RNA therapeutics, including messenger RNA nanoparticle delivery and gene editing for the treatment of hemophilia.

1.
Srivastava
A
,
Santagostino
E
,
Dougall
A
, et al
.
WFH guidelines for the management of hemophilia
.
Haemophilia
.
2020
;
26
(
suppl 6
):
1
-
158
.
2.
Seaman
CD
,
Xavier
F
,
Ragni
MV
.
Hemophilia A: factor VIII deficiency
.
Hematol Oncol Clin North Am
.
2021
;
35
(
6
):
1117
-
1129
.
3.
den Uijl
IEM
,
Mauser Bunschoten
EP
,
Roosendaal
G
, et al
.
Clinical severity of haemophilia A: does the classification of the 1950s still stand?
.
Haemophilia
.
2011
;
17
(
6
):
849
-
853
.
4.
von Drygalski
A
,
Chowdary
P
,
Kulkarni
R
, et al
.
Efanesoctocog alfa prophylaxis for patients with severe hemophilia A
.
N Engl J Med
.
2023
;
388
(
4
):
310
-
318
.
5.
Oldenburg
J
,
Mahlangu
JN
,
Kim
B
, et al
.
Emicizumab prophylaxis in hemophilia A with inhibitors
.
N Engl J Med
.
2017
;
377
(
9
):
809
-
818
.
6.
Mahlangu
J
,
Oldenburg
J
,
Paz-Priel
I
, et al
.
Emicizumab prophylaxis in hemophilia A without inhibitors
.
N Engl J Med
.
2018
;
379
(
9
):
811
-
822
.
7.
Ragni
MV
.
The effect of emicizumab regimen on hemophilia outcomes
.
Lancet Haematol
.
2019
;
6
(
6
):
e286
-
e287
.
8.
Ragni
MV
.
Thrombosis complicating non-factor therapy for hemophilia
.
Med Res Arch
.
2021
;
9
(
11
):
1
-
7
.
9.
Mahlangu
J
,
Kaczmarek
R
,
von Drygalski
A
, et al
.
Two-year outcomes of valoctogene roxaparvovec gene therapy for hemophilia A
.
N Engl J Med
.
2023
;
388
(
8
):
694
-
705
.
10.
Pipe
SW
,
Leebeek
FWG
,
Recht
M
, et al
.
Gene therapy with etranacogene dezaparvovec for hemophilia B
.
N Engl J Med
.
2023
;
388
(
8
):
706
-
718
.
11.
Ragni
MV
.
Hemophilia as a blueprint for gene therapy
.
Science
.
2021
;
374
(
6563
):
40
-
41
.
12.
Shetty
S
,
Vora
S
,
Kulkarni
B
, et al
.
Contribution of natural anticoagulant and fibrinolytic factors in modulating the clinical severity of haemophilia patients
.
Br J Haematol
.
2007
;
138
(
4
):
541
-
544
.
13.
Franchini
M
,
Montagnana
M
,
Targher
G
, et al
.
Interpatient phenotypic inconsistency in severe congenital hemophilia: a systematic review of the role of inherited thrombophilia
.
Semin Thromb Hemost
.
2009
;
35
(
3
):
307
-
312
.
14.
Fire
A
,
Xu
S
,
Montgomery
M
,
Kostas
SA
,
Driver
SE
,
Mello
CC
.
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
.
Nature
.
1998
;
391
(
6669
):
806
-
811
.
15.
Novina
CD
,
Sharp
PA
.
The RNAi revolution
.
Nature
.
2004
;
430
(
6996
):
161
-
164
.
16.
Setten
RL
,
Rossi
JJ
,
Han
S
.
The current state and future directions of RNAi-based therapeutics
.
Nat Rev
.
2019
;
18
(
6
):
421
-
446
.
17.
Alshaer
W
,
Zureigat
H
,
Al Karaki
A
, et al
.
siRNA: Mechanism of action, challenges, and therapeutic approaches
.
Eur J Pharmacol
.
2021
;
905
:
174178
.
18.
Butterfield
JSS
,
Hege
KM
,
Herzog
RW
,
Kaczmarek
R
.
A molecular revolution in the treatment of hemophilia
.
Mol Ther
.
2020
;
28
(
4
):
997
-
1015
.
19.
Zhang
MM
,
Bahal
R
,
Rasmussen
TP
,
Manautou
JE
,
Zhong
X
.
The growth of siRNA-based therapeutics: updated clinical studies
.
Biochem Pharmacol
.
2021
;
189
:
114432
.
20.
Ragni
MV
.
Targeting antithrombin to treat hemophilia
.
N Engl J Med
.
2015
;
373
(
4
):
389
-
391
.
21.
Sehgal
A
,
Barros
S
,
Ivanciu
L
, et al
.
RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia
.
Nat Med
.
2015
;
21
(
5
):
492
-
497
.
22.
Pasi
KJ
,
Rangarajan
S
,
Georgiev
P
, et al
.
Phase I study of fitusiran, an RNAi therapeutic targeting antithrombin in hemophilia A or B
.
N Engl J Med
.
2017
;
377
(
9
):
819
-
828
.
23.
Pasi
KJ
,
Lissitchkov
T
,
Mamonov
V
, et al
.
Targeting of antithrombin in hemophilia A or B with investigational siRNA therapeutic fitusiran: results of the phase 1 inhibitor cohort
.
J Thromb Haemost
.
2021
;
19
(
6
):
1436
-
1446
.
24.
Young
G
,
Srivastava
A
,
Kavakli
K
, et al
.
Efficacy and safety of fitusiran prophylaxis in people with haemophilia A or haemophilia B with inhibitors (ATLAS-INH): a multicentre, open-label, randomized phase 3 trial
.
Lancet
.
2023
;
401
(
10386
):
1427
-
1437
.
25.
Srivastava
A
,
Rangarajan
S
,
Kavakli
K
, et al
.
Fitusiran prophylaxis in people with severe haemophilia A or haemophilia B without inhibitors (ATLAS-A/B): a multicentre, open-label, randomised, phase 3 trial
.
Lancet Haematol
.
2023
;
10
(
5
):
e322
-
e332
.
26.
Srivastava
A
,
Wu
R
,
You
C
, et al
.
Consumption of on-demand factor concentrates and bypassing agents for management of breakthrough bleeds with fitusiran prophylaxis in people with haemophilia A or B: an analysis of two phase 3 studies
.
Res Pract Thromb Haemost
.
2022
;
6
(
S1
):
40
-
43
.
27.
Rangarajan
S
,
Srivastava Am Zukfikar
O
, et al
.
Fitusiran, an investigational siRNA therapeutic targeting antithrombin: analysis of antithrombin levels and thrombin generation from a phase 3 study in people with hemophilia A or B with inhibitors
.
Res Pract Thromb Haemost
.
2022
;
6
(
S1
):
1152
.
28.
Ragni
MV
,
Pipe
SW
,
Pasi
J
, et al
.
Perioperative management of patients with hemophilia receiving fitusiran prophylaxis
.
Res Pract Thromb Haemost
.
2021
;
4
(
S2
):
67
-
72
.
29.
Janas
MM
,
Schlegel
MK
,
Harbison
CE
, et al
.
Selection of GalNAc-conjugated siRNAs with limited off-target rat hepatotoxicity
.
Nat Commun
.
2018
;
9
(
1
):
723
.
30.
Schlegel
MK
,
Janas
MM
,
Jiang
Y
, et al
.
From bench to bedside: improving the clinical safety of GalNAc-siRNA conjugates using seed-pairing destabilization
.
Nucleic Acids Res
.
2022
;
50
(
12
):
6656
-
6670
.
31.
Negrier
C
,
Pasi
KJ
,
Ragni
MV
, et al
.
Fitusiran, an siRNA therapeutic targeting antithrombin for the treatment of hemophilia: proposed revisions to dose and regimen as a risk mitigation for vascular thrombosis
.
Res Pract Thromb Haemost
.
2021
;
4
(
S2
):
56
-
63
.
32.
Hoffman
M
.
Thrombosis and novel hemophilia therapies: the fine line between clotting and bleeding
.
Blood Adv
.
2021
;
5
(
18
):
3736
.
33.
Dahlbäck
B
.
Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitors, and protein S
.
J Thromb Haemost
.
2017
;
15
(
7
):
1241
-
1250
.
34.
Schwarz
HP
,
Fischer
M
,
Hopmeier
P
,
Batard
MA
,
Griffin
JH
.
Plasma protein S deficiency in familial thrombotic disease
.
Blood
.
1984
;
64
(
6
):
1297
-
1300
.
35.
Prince
R
,
Bologna
L
,
Manetti
M
, et al
.
Targeting anticoagulant protein S to improve hemostasis in hemophilia
.
Blood
.
2018
;
131
(
12
):
1360
-
1371
.
36.
Prince
RE
,
Schaeper
U
,
Dames
S
, et al
.
Targeting protein S using small interfering RNA is well tolerated and protects mice with hemophilia A from acute hemarthrosis [abstract]
.
Blood
.
2020
;
136
(
suppl 1
):
20
-
21
.
37.
Prince
RE
,
Schaeper
U
,
Aretz
J
, et al
.
SLN140 a small interfering RNA targeting protein S improves hemostasis potency in hemophilia [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
1670
-
1671
.
38.
Parker
KA
,
Tollefsen
DM
.
The protease specificity of heparin cofactor II. inhibition of thrombin generation during coagulation
.
J Biol Chem
.
1985
;
260
(
6
):
3501
-
3505
.
39.
Tran
TH
,
Marbet
GA
,
Duckert
F
.
Association of hereditary heparin co-factor II with thrombosis
.
Lancet
.
1985
;
2
(
8452
):
413
-
414
.
40.
He
L
,
Vicente
CP
,
Westrick
RJ
,
Eitzman
DT
,
Tollefsen
DM
.
Heparin cofactor II inhibits arterial thrombosis after endothelial injury
.
J Clin Invest
.
2002
;
109
(
2
):
213
-
219
.
41.
Lin
W-y
,
Zhu
R
,
Zhang
Z
, et al
.
RNAi targeting heparin cofactor II promotes hemostasis in hemophilia A
.
Mol Ther Nucleic Acids
.
2021
;
24
:
658
-
668
.
42.
Dolgin
E
.
How COVID unlocked the power of RNA
.
Nature
.
2021
;
589
(
7841
):
189
-
191
.
43.
Ramaswamy
S
,
Tonnu
N
,
Tachikawa
K
, et al
.
Systemic delivery of factor IX messenger RNA for protein replacement therapy
.
Proc Natl Acad Sci
.
2017
;
114
(
10
):
E1941
-
E1950
.
44.
Russick
J
,
Delignat
S
,
Milanov
P
, et al
.
Correction of bleeding in experimental severe hemophilia A by systemic delivery for factor VIII-encoding mRNA
.
Haematologica
.
2020
;
105
(
4
):
1129
-
1137
.
45.
Chen
C-Y
,
Tran
DM
,
Cavedon
A
, et al
.
Treatment of hemophilia A using factor VIII messenger RNA lipid nanoparticles
.
Mol Ther Nucleic Acids
.
2020
;
20
:
534
-
544
.
46.
Truong
B
,
Nguyen
GN
,
Hajj
K
, et al
.
Sustained factor VIII activity following single dose of non-viral integrating gene therapy [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
969
-
970
.
47.
Kim
H
,
Kim
JS
.
A guide to genome engineering with programmable nucleases
.
Nat Rev Genet
.
2014
;
15
(
5
):
321
-
334
.
48.
Doudna
JA
.
The promise and challenge of therapeutic genome editing
.
Nature
.
2020
;
578
(
7794
):
229
-
236
.
49.
Li
H
,
Haurigot
V
,
Doyon
Y
, et al
.
In vivo genome editing restores hemostasis in a mouse model of haemophilia
.
Nature
.
2011
;
475
(
7355
):
217
-
221
.
50.
Anguela
XM
,
Sharma
R
,
Doyon
Y
, et al
.
Robust ZFN-mediated genome editing in adult hemophilic mice
.
Blood
.
2013
;
122
(
19
):
3283
-
3287
.
51.
Lyu
C
,
Shen
J
,
Wang
R
, et al
.
Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system
.
Stem Cell Res Therapy
.
2018
;
9
(
1
):
92
.
52.
Ramaswamy
S
,
Tonnu
N
,
Menon
T
, et al
.
Autologous and heterologous cell therapy for hemophilia B toward functional restoration of factor IX
.
Cell Rep
.
2018
;
23
(
5
):
1565
-
1580
.
53.
Morishige
S
,
Mizuno
S
,
Ozawa
H
, et al
.
CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs
.
Int J Hematol
.
2020
;
111
(
2
):
225
-
233
.
54.
Wang
L
,
Yang
Y
,
Breton
CA
, et al
.
CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX-knockout mice
.
Blood
.
2019
;
133
(
26
):
2745
-
2752
.
55.
Stephens
CJ
,
Lauron
EJ
,
Kashentseva
E
,
Lu
ZH
,
Yokoyama
WM
,
Curiel
DT
.
Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9
.
J Control Release
.
2019
;
298
:
128
-
141
.
56.
Ma
Y
,
Sun
W
,
Zhao
L
, et al
.
Generation of an mESC model with a human hemophilia B nonsense mutation via CRISPR/Cas9 technology
.
Stem Cell Res Ther
.
2022
;
13
(
1
):
353
.
57.
Lee
JH
,
Oh
H-K
,
Choi
BS
, et al
.
Genome editing-mediated knock-in of therapeutic genes ameliorates the disease phenotype in a model of hemophilia
.
Mol Ther Nucleic Acids
.
2022
;
29
:
551
-
562
.
58.
He
X
,
Zhang
Z
,
Xue
J
, et al
.
Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response
.
Nat Commun
.
2022
;
13
(
1
):
7275
.
59.
Sharma
R
,
Anguela
XM
,
Doyon
Y
, et al
.
In vivo genome editing of the albumin locus as a platform for protein replacement therapy
.
Blood
.
2015
;
126
(
15
):
1777
-
1784
.
60.
Park
CY
,
Kim
DH
,
Son
JS
, et al
.
Functional correction of large FVIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9
.
Cell Stem Cell
.
2015
;
17
(
2
):
213
-
220
.
61.
Hu
Z
,
Zhou
M
,
Wu
Y
, et al
.
ssODN-mediated in-frame deletion with CRISPR/Cas9 restores FVIII function in hemophilia A patient-derived iPSCs and ECs
.
Mol Ther Nucleic Acid
.
2019
;
17
:
198
-
209
.
62.
Park
CY
,
Sung
JJ
,
Cho
SR
,
Kim
J
,
Kim
DW
.
Universal correction of blood coagulation factor VIII in patient-derived induced pluripotent stem cells using CRISPR/Cas9
.
Stem Cell Rep
.
2019
;
12
(
6
):
1242
-
1249
.
63.
Sung
JJ
,
Park
CY
,
Leem
JW
,
Cho
MS
,
Kim
DW
.
Restoration of FVIIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs
.
Exp Mol Med
.
2019
;
51
(
4
):
1
-
9
.
64.
Chen
H
,
Shi
M
,
Gilam
A
, et al
.
Hemophilia A meliorated in mice by CRISPR-based in vivo genome editing of human factor VIII
.
Sci Rep
.
2019
;
9
(
1
):
16838
.
65.
Zhang
J-P
,
Cheng
X-X
,
Zhao
M
, et al
.
Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse
.
Genome Biol
.
2019
;
20
(
1
):
276
.
66.
Ramamurthy
RM
,
Rodriguez
M
,
Meares
D
, et al
.
Targeted CRISPR/Cas9-mediated gene addition to a safe harbor in placental cells for the treatment of hemophilia A
.
Res Pract Thromb Haemost
.
2021
;
5
(
S2
):
PB0656
.
67.
Luo
S
,
Li
Z
,
Dai
X
, et al
.
CRISPR/Cas9-mediated in vivo genetic correction in a mouse model of hemophilia A
.
Front Cell Dev Biol
.
2021
;
9
:
672564
.
68.
Hu
Z
,
Wu
Y
,
Xiao
R
, et al
.
Correction of F8 intron 1 inversion in hemophilia A patient- specific iPSCs by CRISPR/Cas9 mediated gene editing
.
Front Genet
.
2023
;
14
:
1115831
.
69.
Anzalone
A
,
Randolph
PB
,
Davis
JR
, et al
.
Search-and-replace genome editing without double-strand breaks or donor DNA
.
Nature
.
2019
;
576
(
7785
):
149
-
157
.
70.
Anzalone
AV
,
Gao
XD
,
Podracky
CJ
, et al
.
Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing
.
Nat Biotechnol
.
2022
;
40
(
5
):
731
-
740
.
71.
Chen
PJ
,
Liu
DR
.
Prime editing for precise and highly versatile genome manipulation
.
Nat Rev Genet
.
2023
;
24
(
3
):
161
-
177
.
You do not currently have access to this content.
Sign in via your Institution