• The first full-length structure of human arachidonate 12-LOX reveal mechanisms of its oligomeric and conformational states.

  • The structures uncover the natural inhibitor of 12-LOX and reveal the binding site of inhibitor ML355.

Human 12-lipoxygenase (12-LOX) is a key enzyme involved in platelet activation, and the regulation of its activity has been targeted for the treatment of heparin-induced thrombocytopenia. Despite the clinical importance of 12-LOX, the exact mechanisms by which it affects platelet activation are not fully understood, and the lack of structural information has limited drug discovery efforts. In this study, we used single-particle cryo-electron microscopy to determine high-resolution structures (1.7-2.8 Å) of human 12-LOX. Our results showed that 12-LOX can exist in multiple oligomeric states, from monomer to hexamer, which may affect its catalytic activity and membrane association. We also identified different conformations within the 12-LOX dimer, which likely represent different time points in its catalytic cycle. Furthermore, we identified small molecules bound to 12-LOX. The active site of the 12-LOX tetramer was occupied by an endogenous 12-LOX inhibitor, a long-chain acyl coenzyme A. In addition, we found that the 12-LOX hexamer can simultaneously bind to arachidonic acid and ML355, a selective 12-LOX inhibitor that has passed a phase 1 clinical trial for the treatment of heparin-induced thrombocytopenia and received a fast-track designation by the Food and Drug Administration. Overall, our findings provide novel insights into the assembly of 12-LOX oligomers, their catalytic mechanism, and small molecule binding, paving the way for further drug development targeting the 12-LOX enzyme.

1.
Lebas
H
,
Yahiaoui
K
,
Martos
R
,
Boulaftali
Y
.
Platelets are at the nexus of vascular diseases
.
Front Cardiovasc Med
.
2019
;
6
:
132
.
2.
Willoughby
S
,
Holmes
A
,
Loscalzo
J
.
Platelets and cardiovascular disease
.
Eur J Cardiovasc Nurs
.
2002
;
1
(
4
):
273
-
288
.
3.
Burkhart
JM
,
Vaudel
M
,
Gambaryan
S
, et al
.
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways
.
Blood
.
2012
;
120
(
15
):
e73
-
82
.
4.
Hamberg
M
,
Samuelsson
B
.
Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets
.
Proc Natl Acad Sci U S A
.
1974
;
71
(
9
):
3400
-
3404
.
5.
Ikei
KN
,
Yeung
J
,
Apopa
PL
, et al
.
Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation
.
J Lipid Res
.
2012
;
53
(
12
):
2546
-
2559
.
6.
Adili
R
,
Tourdot
BE
,
Mast
K
, et al
.
First selective 12-LOX inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
10
):
1828
-
1839
.
7.
Yeung
J
,
Tourdot
BE
,
Fernandez-Perez
P
, et al
.
Platelet 12-LOX is essential for FcgammaRIIa-mediated platelet activation
.
Blood
.
2014
;
124
(
14
):
2271
-
2279
.
8.
Svensson Holm
AC
,
Grenegard
M
,
Ollinger
K
,
Lindstrom
EG
.
Inhibition of 12-lipoxygenase reduces platelet activation and prevents their mitogenic function
.
Platelets
.
2014
;
25
(
2
):
111
-
117
.
9.
Yeung
J
,
Li
W
,
Holinstat
M
.
Platelet signaling and disease: targeted therapy for thrombosis and other related diseases
.
Pharmacol Rev
.
2018
;
70
(
3
):
526
-
548
.
10.
Luci
D
,
Jameson
JB
,
Yasgar
A
, et al
. Discovery of ML355, a potent and selective inhibitor of human 12-lipoxygenase.
Probe Reports from the NIH Molecular Libraries Program [Internet]
.
Bethesda (MD)
:
National Center for Biotechnology Information (US)
;
2013
:
2010
.
11.
Choi
J
,
Chon
JK
,
Kim
S
,
Shin
W
.
Conformational flexibility in mammalian 15S-lipoxygenase: reinterpretation of the crystallographic data
.
Proteins
.
2008
;
70
(
3
):
1023
-
1032
.
12.
Gilbert
NC
,
Bartlett
SG
,
Waight
MT
, et al
.
The structure of human 5-lipoxygenase
.
Science
.
2011
;
331
(
6014
):
217
-
219
.
13.
Gillmor
SA
,
Villasenor
A
,
Fletterick
R
,
Sigal
E
,
Browner
MF
.
The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity
.
Nat Struct Biol
.
1997
;
4
(
12
):
1003
-
1009
.
14.
Kobe
MJ
,
Neau
DB
,
Mitchell
CE
,
Bartlett
SG
,
Newcomer
ME
.
The structure of human 15-lipoxygenase-2 with a substrate mimic
.
J Biol Chem
.
2014
;
289
(
12
):
8562
-
8569
.
15.
Xu
S
,
Mueser
TC
,
Marnett
LJ
,
Funk
MO
.
Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis
.
Structure
.
2012
;
20
(
9
):
1490
-
1497
.
16.
Aleem
AM
,
Jankun
J
,
Dignam
JD
, et al
.
Human platelet 12-lipoxygenase, new findings about its activity, membrane binding and low-resolution structure
.
J Mol Biol
.
2008
;
376
(
1
):
193
-
209
.
17.
Hafner
AK
,
Cernescu
M
,
Hofmann
B
, et al
.
Dimerization of human 5-lipoxygenase
.
Biol Chem
.
2011
;
392
(
12
):
1097
-
1111
.
18.
Ivanov
I
,
Shang
W
,
Toledo
L
, et al
.
Ligand-induced formation of transient dimers of mammalian 12/15-lipoxygenase: a key to allosteric behavior of this class of enzymes?
.
Proteins
.
2012
;
80
(
3
):
703
-
712
.
19.
Zivanov
J
,
Nakane
T
,
Forsberg
BO
, et al
.
New tools for automated high-resolution cryo-EM structure determination in RELION-3
.
Elife
.
2018
;
7
:
e42166
.
20.
Scheres
SHW
.
A Bayesian view on cryo-EM structure determination
.
J Mol Biol
.
2012
;
415
(
2
):
406
-
418
.
21.
Punjani
A
,
Rubinstein
JL
,
Fleet
DJ
,
Brubaker
MA
.
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
.
Nat Methods
.
2017
;
14
(
3
):
290
-
296
.
22.
Zheng
SQ
,
Palovcak
E
,
Armache
J-P
,
Verba
KA
,
Cheng
Y
,
Agard
DA
.
MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
.
Nat Methods
.
2017
;
14
(
4
):
331
-
332
.
23.
Zhang
K
.
Gctf: real-time CTF determination and correction
.
J Struct Biol
.
2016
;
193
(
1
):
1
-
12
.
24.
Punjani
A
,
Fleet
DJ
.
3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM
.
J Struct Biol
.
2021
;
213
(
2
):
107702
.
25.
Varadi
M
,
Anyango
S
,
Deshpande
M
, et al
.
AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D439
-
D444
.
26.
Jumper
J
,
Evans
R
,
Pritzel
A
, et al
.
Highly accurate protein structure prediction with AlphaFold
.
Nature
.
2021
;
596
(
7873
):
583
-
589
.
27.
Pettersen
EF
,
Goddard
TD
,
Huang
CC
, et al
.
UCSF ChimeraX: structure visualization for researchers, educators, and developers
.
Protein Sci
.
2021
;
30
(
1
):
70
-
82
.
28.
Emsley
P
,
Lohkamp
B
,
Scott
WG
,
Cowtan
K
.
Features and development of Coot
.
Acta Crystallogr D
.
2010
;
66
(
pt 4
):
486
-
501
.
29.
Adams
PD
,
Afonine
PV
,
Bunkóczi
G
, et al
.
PHENIX: a comprehensive Python-based system for macromolecular structure solution
.
Acta Crystallogr D
.
2010
;
66
(
pt 2
):
213
-
221
.
30.
Chen
VB
,
Arendall
WB
,
Headd
JJ
, et al
.
MolProbity: all-atom structure validation for macromolecular crystallography
.
Acta Crystallogr D Biol Crystallogr
.
2010
;
66
(
pt 1
):
12
-
21
.
31.
Smart
OS
,
Womack
TO
,
Sharff
A
, et al
.
Grade v.1.2.13
.
Global Phasing
.
2011
Accessed 18 October 2022. www.globalphasing.com.
32.
Tsai
WC
,
Aleem
AM
,
Tena
J
, et al
.
Docking and mutagenesis studies lead to improved inhibitor development of ML355 for human platelet 12-lipoxygenase
.
Bioorg Med Chem
.
2021
;
46
:
116347
.
33.
Voss
OH
,
Lee
HN
,
Tian
L
,
Krzewski
K
,
Coligan
JE
.
Liposome preparation for the analysis of lipid-receptor interaction and efferocytosis
.
Curr Protoc Immunol
.
2018
;
120
:
14.44.1-14.44.21
.
34.
Walther
M
,
Anton
M
,
Wiedmann
M
,
Fletterick
R
,
Kuhn
H
.
The N-terminal domain of the reticulocyte-type 15-lipoxygenase is not essential for enzymatic activity but contains determinants for membrane binding
.
J Biol Chem
.
2002
;
277
(
30
):
27360
-
27366
.
35.
Tsai
WC
,
Aleem
AM
,
Whittington
C
, et al
.
Mutagenesis, hydrogen-deuterium exchange, and molecular docking investigations establish the dimeric interface of human platelet-type 12-lipoxygenase
.
Biochemistry
.
2021
;
60
(
10
):
802
-
812
.
36.
Aleem
AM
,
Tsai
WC
,
Tena
J
, et al
.
Probing the electrostatic and steric requirements for substrate binding in human platelet-type 12-lipoxygenase
.
Biochemistry
.
2019
;
58
(
6
):
848
-
857
.
37.
Neau
DB
,
Bender
G
,
Boeglin
WE
,
Bartlett
SG
,
Brash
AR
,
Newcomer
ME
.
Crystal structure of a lipoxygenase in complex with substrate
.
J Biol Chem
.
2014
;
289
(
46
):
31905
-
31913
.
38.
Shang
W
,
Ivanov
I
,
Svergun
DI
, et al
.
Probing dimerization and structural flexibility of mammalian lipoxygenases by small-angle X-ray scattering
.
J Mol Biol
.
2011
;
409
(
4
):
654
-
668
.
39.
Aleem
AM
,
Wells
L
,
Jankun
J
, et al
.
Human platelet 12-lipoxygenase: naturally occurring Q261/R261 variants and N544L mutant show altered activity but unaffected substrate binding and membrane association behavior
.
Int J Mol Med
.
2009
;
24
(
6
):
759
-
764
.
40.
Tsai
WC
,
Gilbert
NC
,
Ohler
A
, et al
.
Kinetic and structural investigations of novel inhibitors of human epithelial 15-lipoxygenase-2
.
Bioorg Med Chem
.
2021
;
46
:
116349
.
41.
van Leyen
K
,
Duvoisin
RM
,
Engelhardt
H
,
Wiedmann
M
.
A function for lipoxygenase in programmed organelle degradation
.
Nature
.
1998
;
395
(
6700
):
392
-
395
.
42.
Gallegos
EM
,
Reed
TD
,
Mathes
FA
, et al
.
Helical remodeling augments 5-lipoxygenase activity in the synthesis of proinflammatory mediators
.
J Biol Chem
.
2022
;
298
(
9
):
102282
.
43.
Gilbert
NC
,
Gerstmeier
J
,
Schexnaydre
EE
, et al
.
Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products
.
Nat Chem Biol
.
2020
;
16
(
7
):
783
-
790
.
44.
Gilbert
NC
,
Rui
Z
,
Neau
DB
, et al
.
Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663
.
FASEB J
.
2012
;
26
(
8
):
3222
-
3229
.
45.
Yuan
C
,
Rieke
CJ
,
Rimon
G
,
Wingerd
BA
,
Smith
WL
.
Partnering between monomers of cyclooxygenase-2 homodimers
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
16
):
6142
-
6147
.
46.
Yuan
C
,
Sidhu
RS
,
Kuklev
DV
, et al
.
Cyclooxygenase allosterism, fatty acid-mediated cross-talk between monomers of cyclooxygenase homodimers
.
J Biol Chem
.
2009
;
284
(
15
):
10046
-
10055
.
47.
Sevostyanova
I
,
Solovjeva
O
,
Selivanov
V
,
Kochetov
G
.
Half-of-the-sites reactivity of transketolase from Saccharomyces cerevisiae
.
Biochem Biophys Res Commun
.
2009
;
379
(
4
):
851
-
854
.
48.
Janiyani
K
,
Bordelon
T
,
Waldrop
GL
,
Cronan
JE
.
Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer
.
J Biol Chem
.
2001
;
276
(
32
):
29864
-
29870
.
49.
Wielgus-Kutrowska
B
,
Grycuk
T
,
Bzowska
A
.
Part-of-the-sites binding and reactivity in the homooligomeric enzymes - facts and artifacts
.
Arch Biochem Biophys
.
2018
;
642
:
31
-
45
.
50.
Lin
C
,
Lubin
B
,
Smith
S
.
Inhibition of platelet aggregation by acyl-CoA thioesters
.
Biochim Biophys Acta
.
1976
;
428
(
1
):
45
-
55
.
51.
Lascu
I
,
Edwards
B
,
Cucuianu
MP
,
Deamer
DW
.
Platelet aggregation is inhibited by long chain acyl-CoA
.
Biochem Biophys Res Commun
.
1988
;
156
(
2
):
1020
-
1025
.
52.
Fujimoto
Y
,
Tsunomori
M
,
Sumiya
T
,
Nishida
H
,
Sakuma
S
,
Fujita
T
.
Effects of fatty acyl coenzyme a esters on lipoxygenase and cyclooxygenase metabolism of arachidonic acid in rabbit platelets
.
Prostaglandins Leukot Essent Fatty Acids
.
1995
;
52
(
4
):
255
-
258
.
53.
Abranko
L
,
Williamson
G
,
Gardner
S
,
Kerimi
A
.
Comprehensive quantitative analysis of fatty-acyl-coenzyme A species in biological samples by ultra-high performance liquid chromatography-tandem mass spectrometry harmonizing hydrophilic interaction and reversed phase chromatography
.
J Chromatogr A
.
2018
;
1534
:
111
-
122
.
54.
Manolopoulos
P
,
Glenn
JR
,
Fox
SC
, et al
.
Acyl derivatives of coenzyme A inhibit platelet function via antagonism at P2Y1 and P2Y12 receptors: a new finding that may influence the design of anti-thrombotic agents
.
Platelets
.
2008
;
19
(
2
):
134
-
145
.
55.
Luci
DK
,
Jameson
JB
,
Yasgar
A
, et al
.
Synthesis and structure-activity relationship studies of 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase
.
J Med Chem
.
2014
;
57
(
2
):
495
-
506
.
You do not currently have access to this content.
Sign in via your Institution