• The RNase H–like superfamily member PIWIL4 is required for leukemic stem cell function but dispensable for human hematopoietic stem cells.

  • PIWIL4 prevents R-loop accumulation, DNA damage, replication stress, and activation of the ATR pathway in AML cells.

RNA-binding proteins (RBPs) form a large and diverse class of factors, many members of which are overexpressed in hematologic malignancies. RBPs participate in various processes of messenger RNA (mRNA) metabolism and prevent harmful DNA:RNA hybrids or R-loops. Here, we report that PIWIL4, a germ stem cell–associated RBP belonging to the RNase H–like superfamily, is overexpressed in patients with acute myeloid leukemia (AML) and is essential for leukemic stem cell function and AML growth, but dispensable for healthy human hematopoietic stem cells. In AML cells, PIWIL4 binds to a small number of known piwi-interacting RNA. Instead, it largely interacts with mRNA annotated to protein-coding genic regions and enhancers that are enriched for genes associated with cancer and human myeloid progenitor gene signatures. PIWIL4 depletion in AML cells downregulates the human myeloid progenitor signature and leukemia stem cell (LSC)-associated genes and upregulates DNA damage signaling. We demonstrate that PIWIL4 is an R-loop resolving enzyme that prevents R-loop accumulation on a subset of AML and LSC-associated genes and maintains their expression. It also prevents DNA damage, replication stress, and activation of the ATR pathway in AML cells. PIWIL4 depletion potentiates sensitivity to pharmacological inhibition of the ATR pathway and creates a pharmacologically actionable dependency in AML cells.

1.
Tsherniak
A
,
Vazquez
F
,
Montgomery
PG
, et al
.
Defining a cancer dependency map
.
Cell
.
2017
;
170
(
3
):
564
-
576.e16
.
2.
Ley
TJ
,
Miller
C
,
Ding
L
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
3.
Kharas
MG
,
Lengner
CJ
,
Al-Shahrour
F
, et al
.
Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia
.
Nat Med
.
2010
;
16
(
8
):
903
-
908
.
4.
Palanichamy
JK
,
Tran
TM
,
Howard
JM
, et al
.
RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation
.
J Clin Invest
.
2016
;
126
(
4
):
1495
-
1511
.
5.
Wang
E
,
Lu
SX
,
Pastore
A
, et al
.
Targeting an RNA-binding protein network in acute myeloid leukemia
.
Cancer Cell
.
2019
;
35
(
3
):
369
-
384.e7
.
6.
Pereira
B
,
Billaud
M
,
Almeida
R
.
RNA-binding proteins in cancer: old players and new actors
.
Trends Cancer
.
2017
;
3
(
7
):
506
-
528
.
7.
Hentze
MW
,
Castello
A
,
Schwarzl
T
,
Preiss
T
.
A brave new world of RNA-binding proteins
.
Nat Rev Mol Cell Biol
.
2018
;
19
(
5
):
327
-
341
.
8.
Dutertre
M
,
Lambert
S
,
Carreira
A
,
Amor-Gueret
M
,
Vagner
S
.
DNA damage: RNA-binding proteins protect from near and far
.
Trends Biochem Sci
.
2014
;
39
(
3
):
141
-
149
.
9.
Lapidot
T
,
Sirard
C
,
Vormoor
J
, et al
.
A cell initiating human acute myeloid leukaemia after transplantation into SCID mice
.
Nature
.
1994
;
367
(
6464
):
645
-
648
.
10.
Dohner
H
,
Wei
AH
,
Lowenberg
B
.
Towards precision medicine for AML
.
Nat Rev Clin Oncol
.
2021
;
18
(
9
):
577
-
590
.
11.
Majorek
KA
,
Dunin-Horkawicz
S
,
Steczkiewicz
K
, et al
.
The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification
.
Nucleic Acids Res
.
2014
;
42
(
7
):
4160
-
4179
.
12.
Cox
DN
,
Chao
A
,
Lin
H
.
piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells
.
Development
.
2000
;
127
(
3
):
503
-
514
.
13.
Peng
JC
,
Valouev
A
,
Liu
N
,
Lin
H
.
Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb group proteins
.
Nat Genet
.
2016
;
48
(
3
):
283
-
291
.
14.
Cox
DN
,
Chao
A
,
Baker
J
,
Chang
L
,
Qiao
D
,
Lin
H
.
A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal
.
Genes Dev
.
1998
;
12
(
23
):
3715
-
3727
.
15.
Sousa-Victor
P
,
Ayyaz
A
,
Hayashi
R
, et al
.
Piwi is required to limit exhaustion of aging somatic stem cells
.
Cell Rep
.
2017
;
20
(
11
):
2527
-
2537
.
16.
Aravin
AA
,
Sachidanandam
R
,
Bourc'his
D
, et al
.
A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice
.
Mol Cell
.
2008
;
31
(
6
):
785
-
799
.
17.
Kuramochi-Miyagawa
S
,
Watanabe
T
,
Gotoh
K
, et al
.
DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes
.
Genes Dev
.
2008
;
22
(
7
):
908
-
917
.
18.
Iwasaki
YW
,
Murano
K
,
Ishizu
H
, et al
.
Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons
.
Mol Cell
.
2016
;
63
(
3
):
408
-
419
.
19.
Huang
XA
,
Yin
H
,
Sweeney
S
,
Raha
D
,
Snyder
M
,
Lin
H
.
A major epigenetic programming mechanism guided by piRNAs
.
Dev Cell
.
2013
;
24
(
5
):
502
-
516
.
20.
Su
C
,
Ren
ZJ
,
Wang
F
,
Liu
M
,
Li
X
,
Tang
H
.
PIWIL4 regulates cervical cancer cell line growth and is involved in down-regulating the expression of p14ARF and p53
.
FEBS Lett
.
2012
;
586
(
9
):
1356
-
1362
.
21.
Zeng
G
,
Zhang
D
,
Liu
X
, et al
.
Co-expression of Piwil2/Piwil4 in nucleus indicates poor prognosis of hepatocellular carcinoma
.
Oncotarget
.
2017
;
8
(
3
):
4607
-
4617
.
22.
Sivagurunathan
S
,
Arunachalam
JP
,
Chidambaram
S
.
PIWI-like protein, HIWI2 is aberrantly expressed in retinoblastoma cells and affects cell-cycle potentially through OTX2
.
Cell Mol Biol Lett
.
2017
;
22
:
17
.
23.
Wang
Z
,
Liu
N
,
Shi
S
,
Liu
S
,
Lin
H
.
The role of PIWIL4, an Argonaute family protein, in breast cancer
.
J Biol Chem
.
2016
;
291
(
20
):
10646
-
10658
.
24.
Shi
S
,
Yang
ZZ
,
Liu
S
,
Yang
F
,
Lin
H
.
PIWIL1 promotes gastric cancer via a piRNA-independent mechanism
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
36
):
22390
-
22401
.
25.
Seashore-Ludlow
B
,
Rees
MG
,
Cheah
JH
, et al
.
Harnessing connectivity in a large-scale small-molecule sensitivity dataset
.
Cancer Discov
.
2015
;
5
(
11
):
1210
-
1223
.
26.
Cerami
E
,
Gao
J
,
Dogrusoz
U
, et al
.
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
.
Cancer Discov
.
2012
;
2
(
5
):
401
-
404
.
27.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
28.
Bagger
FO
,
Rapin
N
,
Theilgaard-Mönch
K
, et al
.
HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis
.
Nucleic Acids Res
.
2013
;
41
(
database issue
):
D1034
-
1039
.
29.
Goardon
N
,
Marchi
E
,
Atzberger
A
, et al
.
Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia
.
Cancer Cell
.
2011
;
19
(
1
):
138
-
152
.
30.
Nolde
MJ
,
Cheng
EC
,
Guo
S
,
Lin
H
.
Piwi genes are dispensable for normal hematopoiesis in mice
.
PLoS One
.
2013
;
8
(
8
):
e71950
.
31.
Uhlen
M
,
Fagerberg
L
,
Hallström
BM
, et al
.
Proteomics. Tissue-based map of the human proteome
.
Science
.
2015
;
347
(
6220
):
1260419
.
32.
Wei
J
,
Wunderlich
M
,
Fox
C
, et al
.
Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia
.
Cancer Cell
.
2008
;
13
(
6
):
483
-
495
.
33.
Bernt
KM
,
Zhu
N
,
Sinha
AU
, et al
.
MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L
.
Cancer Cell
.
2011
;
20
(
1
):
66
-
78
.
34.
Lo
MC
,
Peterson
LF
,
Yan
M
, et al
.
Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML
.
Blood
.
2012
;
120
(
7
):
1473
-
1484
.
35.
Prange
KHM
,
Mandoli
A
,
Kuznetsova
T
, et al
.
MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia
.
Oncogene
.
2017
;
36
(
23
):
3346
-
3356
.
36.
Wang
QF
,
Wu
G
,
Mi
S
, et al
.
MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome
.
Blood
.
2011
;
117
(
25
):
6895
-
6905
.
37.
Gerstein
MB
,
Kundaje
A
,
Hariharan
M
, et al
.
Architecture of the human regulatory network derived from ENCODE data
.
Nature
.
2012
;
489
(
7414
):
91
-
100
.
38.
Somervaille
TC
,
Cleary
ML
.
Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia
.
Cancer Cell
.
2006
;
10
(
4
):
257
-
268
.
39.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
40.
Heuser
M
,
Yun
H
,
Berg
T
, et al
.
Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex
.
Cancer Cell
.
2011
;
20
(
1
):
39
-
52
.
41.
Krivtsov
AV
,
Figueroa
ME
,
Sinha
AU
, et al
.
Cell of origin determines clinically relevant subtypes of MLL-rearranged AML
.
Leukemia
.
2013
;
27
(
4
):
852
-
860
.
42.
Ye
M
,
Zhang
H
,
Yang
H
, et al
.
Hematopoietic differentiation is required for initiation of acute myeloid leukemia
.
Cell Stem Cell
.
2015
;
17
(
5
):
611
-
623
.
43.
Ng
SW
,
Mitchell
A
,
Kennedy
JA
, et al
.
A 17-gene stemness score for rapid determination of risk in acute leukaemia
.
Nature
.
2016
;
540
(
7633
):
433
-
437
.
44.
Guzman
ML
,
Neering
SJ
,
Upchurch
D
, et al
.
Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells
.
Blood
.
2001
;
98
(
8
):
2301
-
2307
.
45.
Kagoya
Y
,
Yoshimi
A
,
Kataoka
K
, et al
.
Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity
.
J Clin Invest
.
2014
;
124
(
2
):
528
-
542
.
46.
Wang
Y
,
Liu
Y
,
Malek
SN
,
Zheng
P
,
Liu
Y
.
Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies
.
Cell Stem Cell
.
2011
;
8
(
4
):
399
-
411
.
47.
Amon
JD
,
Koshland
D
.
RNase H enables efficient repair of R-loop induced DNA damage
.
Elife
.
2016
;
5
:
e20533
.
48.
Nguyen
HD
,
Yadav
T
,
Giri
S
,
Saez
B
,
Graubert
TA
,
Zou
L
.
Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1
.
Mol Cell
.
2017
;
65
(
5
):
832
-
847.e4
.
49.
Wahba
L
,
Amon
JD
,
Koshland
D
,
Vuica-Ross
M
.
RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability
.
Mol Cell
.
2011
;
44
(
6
):
978
-
988
.
50.
Crossley
MP
,
Bocek
M
,
Cimprich
KA
.
R-loops as cellular regulators and genomic threats
.
Mol Cell
.
2019
;
73
(
3
):
398
-
411
.
51.
Sollier
J
,
Cimprich
KA
.
Breaking bad: R-loops and genome integrity
.
Trends Cell Biol
.
2015
;
25
(
9
):
514
-
522
.
52.
Aguilera
A
,
Garcia-Muse
T
.
R loops: from transcription byproducts to threats to genome stability
.
Mol Cell
.
2012
;
46
(
2
):
115
-
124
.
53.
Roy
D
,
Lieber
MR
.
G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter
.
Mol Cell Biol
.
2009
;
29
(
11
):
3124
-
3133
.
54.
Keam
SP
,
Young
PE
,
McCorkindale
AL
, et al
.
The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells
.
Nucleic Acids Res
.
2014
;
42
(
14
):
8984
-
8995
.
55.
Cristini
A
,
Groh
M
,
Kristiansen
MS
,
Gromak
N
.
RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage
.
Cell Rep
.
2018
;
23
(
6
):
1891
-
1905
.
56.
Crossley
MP
,
Brickner
JR
,
Song
C
, et al
.
Catalytically inactive, purified RNase H1: a specific and sensitive probe for RNA-DNA hybrid imaging
.
J Cell Biol
.
2021
;
220
(
9
):
e202101092
.
57.
Ma
JB
,
Yuan
YR
,
Meister
G
,
Pei
Y
,
Tuschl
T
,
Patel
DJ
.
Structural basis for 5’-end-specific recognition of guide RNA by the A. fulgidus piwi protein
.
Nature
.
2005
;
434
(
7033
):
666
-
670
.
58.
Yuan
YR
,
Pei
Y
,
Ma
JB
, et al
.
Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage
.
Mol Cell
.
2005
;
19
(
3
):
405
-
419
.
59.
Moelling
K
,
Matskevich
A
,
Jung
JS
.
Relationship between retroviral replication and RNA interference machineries
.
Cold Spring Harb Symp Quant Biol
.
2006
;
71
:
365
-
368
.
60.
De Fazio
S
,
Bartonicek
N
,
Di Giacomo
M
, et al
.
The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements
.
Nature
.
2011
;
480
(
7376
):
259
-
263
.
61.
Ginno
PA
,
Lott
PL
,
Christensen
HC
,
Korf
I
,
Chedin
F
.
R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
.
Mol Cell
.
2012
;
45
(
6
):
814
-
825
.
62.
Hamperl
S
,
Bocek
MJ
,
Saldivar
JC
,
Swigut
T
,
Cimprich
KA
.
Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses
.
Cell
.
2017
;
170
(
4
):
774
-
786.e19
.
63.
He
X
,
Chen
X
,
Zhang
X
, et al
.
An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes
.
Nucleic Acids Res
.
2015
;
43
(
7
):
3712
-
3725
.
64.
Li
Y
,
Song
Y
,
Xu
W
, et al
.
R-loops coordinate with SOX2 in regulating reprogramming to pluripotency
.
Sci Adv
.
2020
;
6
(
24
):
eaba0777
.
65.
Huertas
P
,
Aguilera
A
.
Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination
.
Mol Cell
.
2003
;
12
(
3
):
711
-
721
.
66.
Santos-Pereira
JM
,
Aguilera
A
.
R loops: new modulators of genome dynamics and function
.
Nat Rev Genet
.
2015
;
16
(
10
):
583
-
597
.
67.
Bouvy-Liivrand
M
,
Hernández de Sande
A
,
Pölönen
P
, et al
.
Analysis of primary microRNA loci from nascent transcriptomes reveals regulatory domains governed by chromatin architecture
.
Nucleic Acids Res
.
2017
;
45
(
17
):
9837
-
9849
.
68.
Lagadinou
ED
,
Sach
A
,
Callahan
K
, et al
.
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
.
Cell Stem Cell
.
2013
;
12
(
3
):
329
-
341
.
69.
Li
Z
,
Weng
H
,
Su
R
, et al
.
FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase
.
Cancer Cell
.
2017
;
31
(
1
):
127
-
141
.
70.
Iwasaki
M
,
Liedtke
M
,
Gentles
AJ
,
Cleary
ML
.
CD93 marks a non-quiescent human leukemia stem cell population and is required for development of MLL-rearranged acute myeloid leukemia
.
Cell Stem Cell
.
2015
;
17
(
4
):
412
-
421
.
71.
Yoshino
S
,
Yokoyama
T
,
Sunami
Y
, et al
.
Trib1 promotes acute myeloid leukemia progression by modulating the transcriptional programs of Hoxa9
.
Blood
.
2021
;
137
(
1
):
75
-
88
.
72.
Nguyen
HD
,
Leong
WY
,
Li
W
, et al
.
Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes
.
Cancer Res
.
2018
;
78
(
18
):
5363
-
5374
.
73.
Chen
L
,
Chen
JY
,
Huang
YJ
, et al
.
The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations
.
Mol Cell
.
2018
;
69
(
3
):
412
-
425.e6
.
74.
Vetrie
D
,
Helgason
GV
,
Copland
M
.
The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML
.
Nat Rev Cancer
.
2020
;
20
(
3
):
158
-
173
.
75.
Kotsantis
P
,
Silva
LM
,
Irmscher
S
, et al
.
Increased global transcription activity as a mechanism of replication stress in cancer
.
Nat Commun
.
2016
;
7
:
13087
.
76.
Kotsantis
P
,
Petermann
E
,
Boulton
SJ
.
Mechanisms of oncogene-induced replication stress: jigsaw falling into place
.
Cancer Discov
.
2018
;
8
(
5
):
537
-
555
.
77.
Gan
W
,
Guan
Z
,
Liu
J
, et al
.
R-loop-mediated genomic instability is caused by impairment of replication fork progression
.
Genes Dev
.
2011
;
25
(
19
):
2041
-
2056
.
78.
Renaudin
X
,
Lee
M
,
Shehata
M
,
Surmann
EM
,
Venkitaraman
AR
.
BRCA2 deficiency reveals that oxidative stress impairs RNaseH1 function to cripple mitochondrial DNA maintenance
.
Cell Rep
.
2021
;
36
(
5
):
109478
.
79.
Hamard
PJ
,
Santiago
GE
,
Liu
F
, et al
.
PRMT5 regulates DNA repair by controlling the alternative splicing of histone-modifying enzymes
.
Cell Rep
.
2018
;
24
(
10
):
2643
-
2657
.
80.
Tarighat
SS
,
Santhanam
R
,
Frankhouser
D
, et al
.
The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation
.
Leukemia
.
2016
;
30
(
4
):
789
-
799
.
81.
Kirino
Y
,
Kim
N
,
de Planell-Saguer
M
, et al
.
Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability
.
Nat Cell Biol
.
2009
;
11
(
5
):
652
-
658
.
82.
Fordham
SE
,
Blair
HJ
,
Elstob
CJ
, et al
.
Inhibition of ATR acutely sensitizes acute myeloid leukemia cells to nucleoside analogs that target ribonucleotide reductase
.
Blood Adv
.
2018
;
2
(
10
):
1157
-
1169
.
You do not currently have access to this content.
Sign in via your Institution