• A 2-step gene therapy protocol of autologous HSPC transplantation for WHIM syndrome by CRISPR/Cas9-mediated disease allele inactivation.

  • WHIM disease allele–inactivated HSPCs have a strong selective advantage for durable hematopoietic reconstitution over WHIM cells.

WHIM syndrome is an autosomal dominant immunodeficiency disorder caused by gain-of-function mutations in chemokine receptor CXCR4 that promote severe panleukopenia because of retention of mature leukocytes in the bone marrow (BM). We previously reported that Cxcr4-haploinsufficient (Cxcr4+/o) hematopoietic stem cells (HSCs) have a strong selective advantage for durable hematopoietic reconstitution over wild-type (Cxcr4+/+) and WHIM (Cxcr4+/w) HSCs and that a patient with WHIM was spontaneously cured by chromothriptic deletion of the disease allele in an HSC, suggesting that WHIM allele inactivation through gene editing may be a safe genetic cure strategy for the disease. We have developed a 2-step preclinical protocol of autologous hematopoietic stem and progenitor cell (HSPC) transplantation to achieve this goal. First, 1 copy of Cxcr4 in HSPCs was inactivated in vitro by CRISPR/Cas9 editing with a single guide RNA (sgRNA) that does not discriminate between Cxcr4+/w and Cxcr4+/+ alleles. Then, through in vivo natural selection, WHIM allele–inactivated cells were enriched over wild-type allele–inactivated cells. The WHIM allele–inactivated HSCs retained long-term pluripotency and selective hematopoietic reconstitution advantages. To our knowledge, this is the first example of gene therapy for an autosomal dominant gain-of-function disease using a disease allele inactivation strategy in place of the less efficient disease allele repair approach.

1.
Hernandez
PA
,
Gorlin
RJ
,
Lukens
JN
, et al
.
Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease
.
Nat Genet
.
2003
;
34
(
1
):
70
-
74
.
2.
Heusinkveld
LE
,
Yim
E
,
Yang
A
, et al
.
Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency
.
Expert Opin Orphan Drugs
.
2017
;
5
(
10
):
813
-
825
.
3.
Broxmeyer
HE
,
Orschell
CM
,
Clapp
DW
, et al
.
Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist
.
J Exp Med
.
2005
;
201
(
8
):
1307
-
1318
.
4.
Dar
A
,
Kollet
O
,
Lapidot
T
.
Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice
.
Exp Hematol
.
2006
;
34
(
8
):
967
-
975
.
5.
Kawai
T
,
Choi
U
,
Cardwell
L
, et al
.
WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus-truncated CXCR4
.
Blood
.
2007
;
109
(
1
):
78
-
84
.
6.
Nie
Y
,
Han
YC
,
Zou
YR
.
CXCR4 is required for the quiescence of primitive hematopoietic cells
.
J Exp Med
.
2008
;
205
(
4
):
777
-
783
.
7.
Sugiyama
T
,
Kohara
H
,
Noda
M
,
Nagasawa
T
.
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
.
2006
;
25
(
6
):
977
-
988
.
8.
Shirozu
M
,
Nakano
T
,
Inazawa
J
, et al
.
Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene
.
Genomics
.
1995
;
28
(
3
):
495
-
500
.
9.
Ponomaryov
T
,
Peled
A
,
Petit
I
, et al
.
Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function
.
J Clin Invest
.
2000
;
106
(
11
):
1331
-
1339
.
10.
Eash
KJ
,
Greenbaum
AM
,
Gopalan
PK
,
Link
DC
.
CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow
.
J Clin Invest
.
2010
;
120
(
7
):
2423
-
2431
.
11.
McDermott
DH
,
Liu
Q
,
Ulrick
J
, et al
.
The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome
.
Blood
.
2011
;
118
(
18
):
4957
-
4962
.
12.
Moens
L
,
Frans
G
,
Bosch
B
, et al
.
Successful hematopoietic stem cell transplantation for myelofibrosis in an adult with warts-hypogammaglobulinemia-immunodeficiency-myelokathexis syndrome
.
J Allergy Clin Immunol
.
2016
;
138
(
5
):
1485
-
1489.e2
.
13.
Krivan
G
,
Erdos
M
,
Kallay
K
, et al
.
Successful umbilical cord blood stem cell transplantation in a child with WHIM syndrome
.
Eur J Haematol
.
2010
;
84
(
3
):
274
-
275
.
14.
Laberko
A
,
Deordieva
E
,
Krivan
G
, et al
.
Multicenter experience of hematopoietic stem cell transplantation in WHIM syndrome
.
J Clin Immunol
.
2022
;
42
(
1
):
171
-
182
.
15.
McDermott
DH
,
Liu
Q
,
Velez
D
, et al
.
A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor
.
Blood
.
2014
;
123
(
15
):
2308
-
2316
.
16.
Dale
DC
,
Bolyard
AA
,
Kelley
ML
, et al
.
The CXCR4 antagonist plerixafor is a potential therapy for myelokathexis, WHIM syndrome
.
Blood
.
2011
;
118
(
18
):
4963
-
4966
.
17.
McDermott
DH
,
Gao
JL
,
Liu
Q
, et al
.
Chromothriptic cure of WHIM syndrome
.
Cell
.
2015
;
160
(
4
):
686
-
699
.
18.
Gao
JL
,
Yim
E
,
Siwicki
M
, et al
.
Cxcr4-haploinsufficient bone marrow transplantation corrects leukopenia in an unconditioned WHIM syndrome model
.
J Clin Invest
.
2018
;
128
(
8
):
3312
-
3318
.
19.
Gao
JL
,
Owusu-Ansah
A
,
Paun
A
, et al
.
Low-level Cxcr4-haploinsufficient HSC engraftment is sufficient to correct leukopenia in WHIM syndrome mice
.
JCI Insight
.
2019
;
4
(
24
):
e132140
.
20.
Balabanian
K
,
Brotin
E
,
Biajoux
V
, et al
.
Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice
.
Blood
.
2012
;
119
(
24
):
5722
-
5730
.
21.
Gundry
MC
,
Brunetti
L
,
Lin
A
, et al
.
Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9
.
Cell Rep
.
2016
;
17
(
5
):
1453
-
1461
.
22.
Naeem
M
,
Majeed
S
,
Hoque
MZ
,
Ahmad
I
.
Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing
.
Cells
.
2020
;
9
(
7
):
1608
.
23.
Pontejo
SM
,
Murphy
PM
.
Chemokines act as phosphatidylserine-bound "find-me" signals in apoptotic cell clearance
.
PLoS Biol
.
2021
;
19
(
5
):
e3001259
.
24.
Sasaki
Y
,
Matsuoka
Y
,
Hase
M
, et al
.
Marginal expression of CXCR4 on c-kit(+)Sca-1 (+)Lineage (-) hematopoietic stem/progenitor cells
.
Int J Hematol
.
2009
;
90
(
5
):
553
-
560
.
25.
Wu
X
,
Kriz
AJ
,
Sharp
PA
.
Target specificity of the CRISPR-Cas9 system
.
Quant Biol
.
2014
;
2
(
2
):
59
-
70
.
26.
Koblan
LW
,
Erdos
MR
,
Wilson
C
, et al
.
In vivo base editing rescues Hutchinson-Gilford progeria in mice
.
Nature
.
2021
;
589
:
608
-
614
.
27.
Frangoul
H
,
Altshuler
D
,
Cappellini
MD
, et al
.
CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia
.
N Engl J Med
.
2021
;
384
(
3
):
252
-
260
.
28.
Esrick
EB
,
Lehmann
LE
,
Biffi
A
, et al
.
Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease
.
N Engl J Med
.
2021
;
384
(
3
):
205
-
215
.
29.
Gillmore
JD
,
Gane
E
,
Taubel
J
, et al
.
CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis
.
N Engl J Med
.
2021
;
385
(
6
):
493
-
502
.
30.
Busch
K
,
Klapproth
K
,
Barile
M
, et al
.
Fundamental properties of unperturbed haematopoiesis from stem cells in vivo
.
Nature
.
2015
;
518
(
7540
):
542
-
546
.
You do not currently have access to this content.
Sign in via your Institution