Although the genetic landscape of chronic lymphocytic leukemia (CLL) has been broadly profiled by large-scale sequencing studies performed over the past decade, the molecular basis of the transformation of CLL into aggressive lymphoma, or Richter syndrome (RS), has remained incompletely characterized. Recent advances in computational methods of clonal deconvolution, as well as extensive sample collection efforts in this rapidly progressive malignancy, have now enabled comprehensive analysis of paired CLL and RS samples and have led to multiple new studies investigating the genetic, transcriptomic, and epigenetic origins of RS. In parallel, new genetically engineered and xenograft mouse models have provided the opportunity for gleaning fresh biological and mechanistic insights into RS development and stepwise evolution from antecedent CLL. Altogether, these studies have defined RS driver lesions and CLL risk lesions and identified pathways dysregulated in transformation. Moreover, unique molecular subtypes of RS have been revealed, including a disease marked by profound genomic instability with chromothripsis/chromoplexy and whole genome duplication. Novel profiling approaches, including single-cell DNA and transcriptome sequencing of RS biopsy specimens and cell-free DNA profiling of patient plasma, demonstrate promise for the timely identification of RS clones and may translate to noninvasive identification and early diagnosis of RS. This review summarizes the recent scientific advances in RS and supports the integrated study of human genomics with mouse modeling to provide an advanced understanding of the biological underpinnings of transformation. These recent studies have major implications for much-needed novel therapeutic strategies for this still largely incurable malignancy.

1.
Greaves
M
,
Maley
CC
.
Clonal evolution in cancer
.
Nature
.
2012
;
481
(
7381
):
306
-
313
.
2.
Parikh
SA
,
Kay
NE
,
Shanafelt
TD
.
How we treat Richter syndrome
.
Blood
.
2014
;
123
(
11
):
1647
-
1657
.
3.
Black
JRM
,
McGranahan
N
.
Genetic and non-genetic clonal diversity in cancer evolution
.
Nat Rev Cancer
.
2021
;
21
(
6
):
379
-
392
.
4.
Wang
Y
,
Tschautscher
MA
,
Rabe
KG
, et al
.
Clinical characteristics and outcomes of Richter transformation: experience of 204 patients from a single center
.
Haematologica
.
2020
;
105
(
3
):
765
-
773
.
5.
Fabbri
G
,
Khiabanian
H
,
Holmes
AB
, et al
.
Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome
.
J Exp Med
.
2013
;
210
(
11
):
2273
-
2288
.
6.
Chigrinova
E
,
Rinaldi
A
,
Kwee
I
, et al
.
Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome
.
Blood
.
2013
;
122
(
15
):
2673
-
2682
.
7.
Rossi
D
,
Spina
V
,
Deambrogi
C
, et al
.
The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation
.
Blood
.
2011
;
117
(
12
):
3391
-
3401
.
8.
Gine
E
,
Martinez
A
,
Villamor
N
, et al
.
Expanded and highly active proliferation centers identify a histological subtype of chronic lymphocytic leukemia (“accelerated” chronic lymphocytic leukemia) with aggressive clinical behavior
.
Haematologica
.
2010
;
95
(
9
):
1526
-
1533
.
9.
Soilleux
EJ
,
Wotherspoon
A
,
Eyre
TA
,
Clifford
R
,
Cabes
M
,
Schuh
AH
.
Diagnostic dilemmas of high-grade transformation (Richter's syndrome) of chronic lymphocytic leukaemia: results of the phase II National Cancer Research Institute CHOP-OR clinical trial specialist haemato-pathology central review
.
Histopathology
.
2016
;
69
(
6
):
1066
-
1076
.
10.
Rossi
D
,
Spina
V
,
Cerri
M
, et al
.
Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome
.
Clin Cancer Res
.
2009
;
15
(
13
):
4415
-
4422
.
11.
Visentin
A
,
Bonaldi
L
,
Rigolin
GM
, et al
.
The complex karyotype landscape in chronic lymphocytic leukemia allows the refinement of the risk of Richter syndrome transformation
.
Haematologica
.
2022
;
107
(
4
):
868
-
876
.
12.
Mao
Z
,
Quintanilla-Martinez
L
,
Raffeld
M
, et al
.
IgVH mutational status and clonality analysis of Richter’s transformation: diffuse large B-cell lymphoma and Hodgkin lymphoma in association with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 different pathways of disease evolution
.
Am J Surg Pathol
.
2007
;
31
(
10
):
1605
-
1614
.
13.
Klintman
J
,
Appleby
N
,
Stamatopoulos
B
, et al
.
Genomic and transcriptomic correlates of Richter transformation in chronic lymphocytic leukemia
.
Blood
.
2021
;
137
(
20
):
2800
-
2816
.
14.
Nadeu
F
,
Royo
R
,
Massoni-Badosa
R
, et al
.
Detection of early seeding of Richter transformation in chronic lymphocytic leukemia
.
Nat Med
.
2022
;
28
(
8
):
1662
-
1671
.
15.
Parry
EM
,
Leshchiner
I
,
Guièze
R
, et al
.
Evolutionary history of transformation from chronic lymphocytic leukemia to Richter syndrome
.
Nat Med
.
2023
;
29
(
1
):
158
-
169
.
16.
Knisbacher
BA
,
Lin
Z
,
Hahn
CK
, et al
.
Molecular map of chronic lymphocytic leukemia and its impact on outcome
.
Nat Genet
.
2022
;
54
(
11
):
1664
-
1674
.
17.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
18.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
19.
Broseus
J
,
Hergalant
S
,
Vogt
J
, et al
.
4. Molecular characterization of Richter syndrome identifies de novo diffuse large B-cell lymphomas with poor prognosis
.
Nat Commun
.
2023
;
14
(
1
):
309
.
20.
Penter
L
,
Gohil
SH
,
Lareau
C
, et al
.
Longitudinal single-cell dynamics of chromatin accessibility and mitochondrial mutations in chronic lymphocytic leukemia mirror disease history
.
Cancer Discov
.
2021
;
11
(
12
):
3048
-
3063
.
21.
De Paoli
L
,
Cerri
M
,
Monti
S
, et al
.
MGA, a suppressor of MYC, is recurrently inactivated in high risk chronic lymphocytic leukemia
.
Leuk Lymphoma
.
2013
;
54
(
5
):
1087
-
1090
.
22.
Eyre
TA
,
Schuh
A
,
Wierda
WG
, et al
.
Acalabrutinib monotherapy for treatment of chronic lymphocytic leukaemia (ACE-CL-001): analysis of the Richter transformation cohort of an open-label, single-arm, phase 1-2 study
.
Lancet Haematol
.
2021
;
8
(
12
):
e912
-
e921
.
23.
Wierda
WG
,
Lewis
DJ
,
Ghia
P
, et al
.
Efficacy of Pirtobrutinib, a highly selective, non-covalent (reversible) BTK inhibitor in richter transformation: results from the phase 1/2 BRUIN study [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
846
-
849
.
24.
Beekman
R
,
Chapaprieta
V
,
Russinol
N
, et al
.
The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
6
):
868
-
880
.
25.
Playa-Albinyana
H
,
Arenas
F
,
Royo
R
, et al
.
Generation of Richter transformation models throughout chronic lymphocytic leukemia patient-derived Xenografts: a clonal evolution model [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
1534
-
1535
.
26.
Kipps
TJ
,
Stevenson
FK
,
Wu
CJ
, et al
.
Chronic lymphocytic leukaemia
.
Nat Rev Dis Primers
.
2017
;
3
:
16096
.
27.
Ding
W
,
LaPlant
BR
,
Call
TG
, et al
.
Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL
.
Blood
.
2017
;
129
(
26
):
3419
-
3427
.
28.
Jain
N
,
Senapati
J
,
Thakral
B
, et al
.
A phase 2 study of Nivolumab combined with Ibrutinib in patients with diffuse large B-cell Richter transformation of CLL
.
Blood Adv
.
2023
;
7
(
10
):
1958
-
1966
.
29.
Younes
A
,
Brody
J
,
Carpio
C
, et al
.
Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study
.
Lancet Haematol
.
2019
;
6
(
2
):
e67
-
e78
.
30.
Smyth
E
,
Eyre
TA
,
Cheah
CY
.
Emerging therapies for the management of Richter transformation
.
J Clin Oncol
.
2023
;
41
(
2
):
395
-
409
.
31.
Wang
Y
,
Sinha
S
,
Wellik
LE
, et al
.
Distinct immune signatures in chronic lymphocytic leukemia and Richter syndrome
.
Blood Cancer J
.
2021
;
11
(
5
):
86
.
32.
He
R
,
Ding
W
,
Viswanatha
DS
, et al
.
PD-1 expression in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and large B-cell Richter transformation (DLBCL-RT): a characteristic feature of DLBCL-RT and potential surrogate marker for clonal relatedness
.
Am J Surg Pathol
.
2018
;
42
(
7
):
843
-
854
.
33.
Behdad
A
,
Griffin
B
,
Chen
YH
, et al
.
PD-1 is highly expressed by neoplastic B-cells in Richter transformation
.
Br J Haematol
.
2019
;
185
(
2
):
370
-
373
.
34.
Gohil
SH
,
Iorgulescu
JB
,
Braun
DA
,
Keskin
DB
,
Livak
KJ
.
Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy
.
Nat Rev Clin Oncol
.
2021
;
18
(
4
):
244
-
256
.
35.
Lemvigh
CK
,
Parry
EM
,
Deng
SL
, et al
.
ZNF683 (Hobit) marks a CD8+ T cell population associated with anti-tumor immunity following anti-PD-1 therapy for Richter syndrome
.
Blood
.
2022
;
140
(
Supplement 1
):
1807
-
1808
.
36.
National Comprehensive Cancer Network
.
Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma
.
2022
:
2022
.
37.
Davids
MS
,
Rogers
KA
,
Tyekucheva
S
, et al
.
Venetoclax plus dose-adjusted R-EPOCH (VR-EPOCH) for Richter's syndrome
.
Blood
.
2022
;
139
(
5
):
686
-
689
.
38.
Wilson
WH
,
Wright
GW
,
Huang
DW
, et al
.
Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL
.
Cancer Cell
.
2021
;
39
(
12
):
1643
-
1653.e3
.
39.
Bichi
R
,
Shinton
SA
,
Martin
ES
, et al
.
Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
10
):
6955
-
6960
.
40.
Knittel
G
,
Rehkämper
T
,
Korovkina
D
, et al
.
Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia
.
Nat Commun
.
2017
;
8
(
1
):
153
.
41.
Lucas
F
,
Rogers
KA
,
Harrington
BK
, et al
.
Emu-TCL1xMyc: a novel mouse model for concurrent CLL and B-cell lymphoma
.
Clin Cancer Res
.
2019
;
25
(
20
):
6260
-
6273
.
42.
Hing
ZA
,
Walker
JS
,
Whipp
EC
, et al
.
Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter's transformation
.
Nat Commun
.
2023
;
14
(
1
):
97
.
43.
Ten Hacken
E
,
Sewastianik
T
,
Yin
S
, et al
.
In vivo modeling of CLL transformation to Richter’s syndrome reveals convergent evolutionary paths and therapeutic vulnerabilities
.
Blood Cancer Discov
.
2023
;
4
(
2
):
150
-
169
.
44.
Biran
A
,
Yin
S
,
Kretzmer
H
, et al
.
Activation of notch and Myc signaling via B-cell-restricted depletion of Dnmt3a generates a consistent Murine Model of chronic lymphocytic leukemia
.
Cancer Res
.
2021
;
81
(
24
):
6117
-
6130
.
45.
Mahajan
VS
,
Mattoo
H
,
Sun
N
, et al
.
B1a and B2 cells are characterized by distinct CpG modification states at DNMT3A-maintained enhancers
.
Nat Commun
.
2021
;
12
(
1
):
2208
.
46.
Chakraborty
S
,
Martines
C
,
Porro
F
, et al
.
B-cell receptor signaling and genetic lesions in TP53 and CDKN2A/CDKN2B cooperate in Richter transformation
.
Blood
.
2021
;
138
(
12
):
1053
-
1066
.
47.
Martines
C
,
Chakraborty
S
,
Vujovikj
M
, et al
.
Macrophage- and BCR- but not TLR-derived signals support the growth of CLL and Richter Syndrome murine models in vivo
.
Blood
.
2022
;
140
(
22
):
2335
-
2347
.
48.
Lanham
S
,
Hamblin
T
,
Oscier
D
,
Ibbotson
R
,
Stevenson
F
,
Packham
G
.
Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia
.
Blood
.
2003
;
101
(
3
):
1087
-
1093
.
49.
Dühren-von Minden
M
,
Übelhart
R
,
Schneider
D
, et al
.
Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling
.
Nature
.
2012
;
489
(
7415
):
309
-
312
.
50.
Kohlhaas
V
,
Blakemore
SJ
,
Al-Maarri
M
, et al
.
Active Akt signaling triggers CLL toward Richter transformation via overactivation of Notch1
.
Blood
.
2021
;
137
(
5
):
646
-
660
.
51.
Ten Hacken
E
,
Brunsting Hoffmann
G
,
Cruz
K
, et al
.
Immuno-genetic changes underlie response to immune checkpoint blockade therapy in Richter’s Syndrome mouse models [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
1538
-
1539
.
52.
Fiskus
W
,
Mill
CP
,
Perera
D
, et al
.
BET proteolysis targeted chimera-based therapy of novel models of Richter transformation-diffuse large B-cell lymphoma
.
Leukemia
.
2021
;
35
(
9
):
2621
-
2634
.
53.
Vaisitti
T
,
Braggio
E
,
Allan
JN
, et al
.
Novel Richter Syndrome Xenograft models to study genetic architecture, biology, and therapy responses
.
Cancer Res
.
2018
;
78
(
13
):
3413
-
3420
.
54.
Iannello
A
,
Vitale
N
,
Coma
S
, et al
.
Synergistic efficacy of the dual PI3K-δ/γ inhibitor duvelisib with the Bcl-2 inhibitor venetoclax in Richter syndrome PDX models
.
Blood
.
2021
;
137
(
24
):
3378
-
3389
.
55.
Vaisitti
T
,
Arruga
F
,
Vitale
N
, et al
.
ROR1 targeting with the antibody-drug conjugate VLS-101 is effective in Richter syndrome patient-derived xenograft mouse models
.
Blood
.
2021
;
137
(
24
):
3365
-
3377
.
56.
Vaisitti
T
,
Vitale
N
,
Micillo
M
, et al
.
Anti-CD37 alpha-amanitin-conjugated antibodies as potential therapeutic weapons for Richter syndrome
.
Blood
.
2022
;
140
(
13
):
1565
-
1569
.
57.
Cirillo
M
,
Craig
AFM
,
Borchmann
S
,
Kurtz
DM
.
Liquid biopsy in lymphoma: molecular methods and clinical applications
.
Cancer Treat Rev
.
2020
;
91
:
102106
.
58.
Yeh
P
,
Hunter
T
,
Sinha
D
, et al
.
Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia
.
Nat Commun
.
2017
;
8
(
1
):
14756
.
59.
Mato
AR
,
Wierda
WG
,
Davids
MS
, et al
.
Utility of positron emission tomography-computed tomography in patients with chronic lymphocytic leukemia following B-cell receptor pathway inhibitor therapy
.
Haematologica
.
2019
;
104
(
11
):
2258
-
2264
.
60.
Gribben
JG
.
How and when I do allogeneic transplant in CLL
.
Blood
.
2018
;
132
(
1
):
31
-
39
.
61.
Kharfan-Dabaja
MA
,
Kumar
A
,
Hamadani
M
, et al
.
Clinical practice recommendations for use of allogeneic hematopoietic cell transplantation in chronic lymphocytic leukemia on behalf of the Guidelines Committee of the American Society for Blood and Marrow Transplantation
.
Biol Blood Marrow Transplant
.
2016
;
22
(
12
):
2117
-
2125
.
You do not currently have access to this content.
Sign in via your Institution