Background

CD19 CAR T immunotherapy has been successful in achieving durable remissions in some patients with relapsed/refractory B cell lymphomas, but disease progression and loss of CAR T cell persistence remains problematic. Interleukin 15 (IL-15) is known to support T cell proliferation and survival, and therefore may enhance CAR T cell efficacy, however, utilizing native IL-15 is challenging due to its short half-life and poor tolerability in the clinical setting. NKTR-255 is a polymer-conjugated IL-15 that retains binding affinity to IL15Rα and exhibits reduced clearance, providing sustained pharmacodynamic responses. We investigated the effects of NKTR-255 on human CD19 CAR T cells both in vitro and in an in vivo xenogeneic B cell lymphoma model and found improved survival of lymphoma bearing mice receiving NKTR-255 and CAR T cells compared to CAR T cells alone. Here, we extend upon these findings to further characterize CAR T cells in vivo and examine potential mechanisms underlying improved anti-tumor efficacy.

Methods

CD19 CAR T cells incorporating 4-1BB co-stimulation were generated from CD8 and CD4 T cells isolated from healthy donors. For in vitro studies, CAR T cells were incubated with NKTR-255 or native IL-15 with and without CD19 antigen. STAT5 phosphorylation, CAR T cell phenotype and CFSE dilution were assessed by flow cytometry and cytokine production by Luminex. For in vivo studies, NSG mice received 5x105 Raji lymphoma cells IV on day (D)-7 and a subtherapeutic dose (0.8x106) of CAR T cells (1:1 CD4:CD8) on D0. To determine optimal start date of NKTR-255, mice were treated weekly starting on D-1, 7, or 14 post CAR T cell infusion. Tumors were assessed by bioluminescence imaging. Tumor-free mice were re-challenged with Raji cells. For necropsy studies mice received NKTR-255 every 7 days following CAR T cell infusion and were euthanized at various timepoints post CAR T cell infusion.

Results

Treatment of CD8 and CD4 CAR T cells in vitro with NKTR-255 resulted in dose dependent STAT5 phosphorylation and antigen independent proliferation. Co-culture of CD8 CAR T cells with CD19 positive targets and NKTR-255 led to enhanced proliferation, expansion and TNFα and IFNγ production, particularly at lower effector to target ratios. Further studies showed that treatment of CD8 CAR T cells with NKTR-255 led to decreased expression of activated caspase 3 and increased expression of bcl-2. In Raji lymphoma bearing NSG mice, administration of NKTR-255 in combination with CAR T cells increased peak CAR T cell numbers, Ki-67 expression and persistence in the bone marrow compared to mice receiving CAR T cells alone. There was a higher percentage of EMRA like (CD45RA+CCR7-) CD4 and CD8 CAR T cells in NKTR-255 treated mice compared to mice treated with CAR T cells alone and persistent CAR T cells in mice treated with NKTR-255 were able to reject re-challenge of Raji tumor cells. Additionally, starting NKTR-255 on D7 post T cell infusion resulted in superior tumor control and survival compared to starting NKTR-255 on D-1 or D14.

Conclusion

Administration of NKTR-255 in combination with CD19 CAR T cells leads to improved anti-tumor efficacy making NKTR-255 an attractive candidate for enhancing CAR T cell therapy in the clinic.

Disclosures

Chou:Nektar Therapeutics: Other: Travel grant. Fraessle:Technical University of Munich: Patents & Royalties. Busch:Juno Therapeutics/Celgene: Consultancy, Equity Ownership, Research Funding; Kite Pharma: Equity Ownership; Technical University of Munich: Patents & Royalties. Miyazaki:Nektar Therapeutics: Employment, Equity Ownership. Marcondes:Nektar Therapeutics: Employment, Equity Ownership. Riddell:Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Adaptive Biotechnologies: Consultancy; Lyell Immunopharma: Equity Ownership, Patents & Royalties, Research Funding. Turtle:Allogene: Other: Ad hoc advisory board member; Novartis: Other: Ad hoc advisory board member; Humanigen: Other: Ad hoc advisory board member; Nektar Therapeutics: Other: Ad hoc advisory board member, Research Funding; Caribou Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; T-CURX: Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Patents & Royalties: Co-inventor with staff from Juno Therapeutics; pending, Research Funding; Precision Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eureka Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Other: Ad hoc advisory board member.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution