Background: Acute lymphoblastic leukemia (ALL) is the most frequent pediatric malignancy, of which T- cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset. Due to the advent of new therapies, T-ALL now has a 5-year event-free survival (EFS) rate exceeding 85%. However, some patients still relapse and display resistance to therapy. Moreover, adverse side-effects of intensive chemotherapy worsen the duration of treatment. Therefore, we still need to improve our current treatment beyond that of the chemotherapeutic approaches. It has been shown that the maturation stage of T-ALL decides its dependency on Bcl-2/Bcl-xL. The immature early T cell progenitor ALL (ETP-ALL) rely on Bcl-2 for their survival while all the other stages of T-ALL and primary patient samples depend on Bcl-xL. Bcl-2 inhibitors have thus shown to display promising antitumor activity against ETP-ALL, a subgroup with a high risk of relapse, but with a variable response across these patients. Therefore, there is a need for predictive biomarkers and further investigation towards finding a combination of drugs for the treatment of these patients.

Methodology & Aim: We screened 10 different T-ALL cell lines with a combination of Bcl-2 inhibitor and a panel of 378 protein kinase inhibitors and identified polo-like kinase inhibitor as a promising candidate. We thus aimed to study the combined effect of Bcl-2 and PLK1 inhibition in a panel of T-ALL cell lines and in a PDX model of chemo-resistant childhood T-ALL. We also investigated the underlying mechanism of drug synergy by various biochemical assays.

Results: Cell viability of 14 T-ALL cell lines was determined after being subjected to Bcl-2 inhibitor (ABT-199) and PLK1 inhibitor (BI-6727). All cell lines responded well to BI6727 with an EC50 of less than 70nM. However, they showed differential response to ABT199 with only 3 cell lines being sensitive with an EC50 of less than 40nM. The mRNA levels of Bcl-2, Bcl-xL and PLK 1, 2, 3 and 4 were determined by qRT-PCR. PLK1 was found to be highly expressed in all the cell lines as compared to the rest of the 3 PLK family proteins. ABT-199-sensitive cell lines showed lower Bcl-xL mRNA levels irrespective of their Bcl-2 expression, and displayed synergy with BI-6727. A higher degree of apoptosis was also observed in the combination treatment as compared to a single drug. Immunoblot analysis revealed cleavage of PARP1 and lower levels of c-Myc and MCL1 expression in the presence of both ABT-199 and BI-6727.

Conclusions: Upregulation of the anti-apoptotic BCL2 family members is one of the canonical ways for cancer cells to escape apoptosis. In the past years, several highly selective and potent BCL2 inhibitors have been developed and showed promising efficacy in various cancers. We found that the sensitivity of T-ALL cell lines to ABT-199 is largely determined by the lower levels of Bcl-xL expression. Furthermore, ABT-199 displays synergy with the PLK inhibitor. T-ALL cell lines predominantly express PLK1 and thus the combinatorial effect of ABT-199 and BI-6727 is mediated through the pharmacological inhibition of both BCL2 and PLK1. Currently, we are generating iRFP-expressing T-ALL cell lines which will be used to check drug efficacy in vivo. Furthermore, we have collected chemo-resistant PDX cell lines which will be used to verify the cell line data. Besides its role in cell cycle control, we still have very limited knowledge about the function of PLK1 in leukemia. Thus, studying its role in T-ALL cell lines by knocking down PLK1 with CRISPR/Cas9 technology will provide an important insight.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution