BCL2 family members such as MCL1, BCLXL, and BCL2 are critical for cancer cell survival and therefore represent promising therapeutic targets. Both B cells and CLL cells depend primarily on BCL-2 and are thus sensitive to the BCL2 specific inhibitor venetoclax, while plasma cells and multiple myeloma typically depend on Mcl-1 and would therefore be resistant to venetoclax. However, a subset of myeloma is venetoclax sensitive based on recent in vitro and clinical trial data. In preliminary results from a phase I trial of venetoclax in multiple myeloma, 40% of patients positive for t(11;14) had objective responses, while only 6% of t(11;14) negative patients responded. We have made similar observations with in vitro testing of 30 freshly isolated myeloma patient samples, identifying both non-t(11;14) samples sensitive to venetoclax as well as resistant t(11;14) positive samples. Together, these results suggest not only that a subset of multiple myeloma is co-dependent on BCL2 but also that t(11;14) is neither necessary nor sufficient for responding to venetoclax. We therefore set out to identify other factors that may predict BCL2 dependence in multiple myeloma.

Previous studies of t(11;14) myeloma have noted increased expression of CD20, CD23, CD79a, and PAX5 which are typically associated with B cells prior to their differentiation into plasma cells. Based on these observations we hypothesized that venetoclax sensitivity in myeloma may be associated with the retention of B cell properties including BCL2 dependence. We probed an online expression database of myeloma cell lines for non-t(11;14) cell lines expressing CD20 and identified two cell lines, OCI-My5 and PCM6, both of which we found to have an IC50 of approximately 50nM when treated with venetoclax. We went on to characterize a panel of 13 cell lines. In addition to OCI-My5 and PCM6, 4 other cell lines were sensitive to venetoclax, all positive for t(11;14). Of the 7 venetoclax resistant cell lines, 2 were t(11;14) positive. Protein levels of MCL1, BCLXL, and BCL2 were comparable among the 13 lines and therefore anti-apoptotic expression is unlikely to be responsible for venetoclax sensitivity. Consistent with our previous co-immunoprecipitation studies, more of the pro-apoptotic BIM was bound to BCL2 in venetoclax sensitive lines compared to resistant lines. In the absence of differences in BCL2 family expression, we next sought to identify other B cell related features correlating with venetoclax sensitivity. We used RNAseq data from our 13 cell lines to compare the expression of 100 genes previously reported to be differentially expressed between normal B cells and plasma cells. Interestingly, unsupervised clustering revealed a group of venetoclax sensitive cells enriched for other B cell associated genes. GSEA revealed enrichment of genes associated with immune system activation at a p < 0.001. We also analyzed the differential expression of genes between our sensitive and resistant lines and again identified overexpression of B cell related genes such as CD20, CD79A, STAT5A, and RASGRP2 in venetoclax sensitive lines, though no single marker was present in all of the venetoclax sensitive lines. We examined the expression of CD20, CD79a, and CD79b in the CoMMpass data set (IA8) as well and found that they were not co-expressed in most patients, again suggesting that no single marker is likely to be predictive. Finally, we created a gene signature from the top differentially expressed genes to predict sensitivity or resistance to venetoclax and used this signature to evaluate a database of 68 myeloma cell lines. One of the top hits predicted to be sensitive by our gene signature is the t(11;14) negative line MOLP2, and indeed this cell line was recently reported to be highly responsive to venetoclax. In conclusion, B cell markers and our gene signature correlate with BCL2 dependence and venetoclax sensitivity independent of t(11;14).

Disclosures

Bahlis:BMS: Honoraria; Onyx: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Other: Travel Expenses, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Other: Travel Expenses, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria. Nooka:Spectrum, Novartis, Onyx pharmaceuticals: Consultancy. Kaufman:Pharmacyclics: Consultancy; Incyte: Consultancy; Novartis: Consultancy, Research Funding; Celgene: Consultancy, Research Funding. Lonial:Onyx: Consultancy; Onyx: Consultancy; BMS: Consultancy; Janssen: Consultancy; Merck: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Millenium: Consultancy; BMS: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Janssen: Consultancy.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution