Although recent advances in the development of multiple myeloma (MM) therapies such as proteasome inhibitors and immunomodulatory agents have improved patient outcomes, MM remains incurable. Additional therapeutic agents with high efficacy, low toxicity and the convenience of oral administration are in high demand. BET inhibitors, such as JQ-1, have been considered as potential therapeutic agents for MM. In the present study, we report that TTI-281, an orally bioavailable BET inhibitor, displays anti-MM activity with a low toxicity profile in preclinical studies.

First, TTI-281 was tested for binding and anti-tumor activity in vitro. BROMOscan and AlphaScreen assays demonstrated that TTI-281 bound to bromodomains of BRD2/BRD3/BRD4 with Kd values less than 10 nM. In MTS assays, TTI-281 inhibited the growth of MM cell lines (MM.1s, NCIH929, and RPMI-8826) with cell growth-inhibition (IC50) values less than 300 nM.

Next, in vitro ADME screening and in vivo PK studies were conducted. Permeability assays using murine gastrointestinal epithelial cells indicated that TTI-281 had good permeability with little efflux liability (efflux ratio <1), suggesting favorable properties for oral absorption. Indeed, TTI-281 displayed excellent oral bioavailability in both mice and rats (93.1% and 91.8%, respectively). In addition, TTI-281 did not interfere with the metabolism of representative CYP isozyme substrates at concentrations up to 50 μM in pooled human liver microsomes. Data also suggested minimal potential for drug-drug interactions, allowing for the possible combination with first-line therapy to improve therapeutic and survival outcomes.

Finally, TTI-281 was tested for anti-myeloma efficacy and tolerability in vivo. NOD-SCID mice (n=10/group) subcutaneously engrafted with the human myeloma cell line MM.1S were treated orally once daily for 21 days with different doses of TTI-281, vehicle control or the benchmark drug carfilzomib. TTI-281 reduced tumor growth in a dose-dependent manner in this MM xenograft model. At 30 mg/kg/day, TTI-281 led to a statistically significant decrease in tumor growth compared with the vehicle control and carfilzomib (reduced tumor volume: 67% after TTI-281 treatment vs 33% after carfilzomib treatment, p<0.0003). Furthermore, TTI-281 treatment was well tolerated, with no effect on body weight or other obvious toxicity.

In summary, our preclinical data suggest that the orally available BET inhibitor TTI-281 has an excellent efficacy and safety profile, highlighting its potential as a promising drug candidate for myeloma therapy.

Disclosures

Wang:Trillium Therapeutics: Employment, Patents & Royalties. Choi:Trillium Therapeutics: Employment. Dove:Trillium Therapeutics: Employment, Patents & Royalties. Wang:Trillium Therapeutics: Employment. Schimmer:Novartis: Honoraria. Petrova:Trillium Therapeutics Inc: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Uger:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Slassi:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution