Abstract
DNA methylation is one of the major epigenetic modifications in the vertebrate genome and is important for development, stem cell differentiation, and malignant transformation. DNA methylation is catalyzed by the DNA methyltransferase enzymes Dnmt1, Dnmt3a, and Dnmt3b. We have recently shown that Dnmt3a is essential for hematopoietic stem cell (HSC) differentiation. Ablation of Dnmt3a in hematopoietic cells (Mx1-CRE; Dnmt3a-KO) resulted in HSCs that could not sustain peripheral blood generation after serial transplantation, while phenotypically defined HSCs accumulated in the bone marrow. Recurrent somatic mutations in DNTM3A have been discovered in patients with a wide range of hematopoietic malignancies (AML, MDS, MPN, CML, T-ALL, T-cell lymphoma) suggesting a critical role for de novo DNA methylation in normal and leukemic hematopoiesis. As Dnmt3b is also highly expressed in HSCs and congenital mutations in DNMT3B can cause ICF (immunodeficiency, centromeric instability, and facial anomalies) syndrome, in this study we used a mouse model to investigate if Dnmt3b had distinct roles in HSCs.
We conditionally inactivated Dnmt3b in HSCs using the Mx1-CRE system (Dnmt3b-KO) and performed serial competitive transplantation. Loss of Dnmt3b had minimal functional consequences for adult HSC function even after three rounds of transplantation. However, combinatorial deletion of both Dnmt3a and Dnmt3b (Dnmt3ab-dKO) exacerbated the differentiation defect seen in Dnmt3a-KO HSCs, leading to a dramatic accumulation of mutant HSCs in the bone marrow (>50-fold), suggesting a synergistic effect resulting from simultaneous ablation of both de novo DNA methyltransferases. The accumulation of Dnmt3ab-dKO HSCs cannot be attributed to altered proliferation or apoptosis, but is due to an imbalance between self-renewal and differentiation. RNA-SEQ of the mutant HSCs revealed loss of transcriptional integrity in Dnmt3ab-dKO HSCs including increased expression of repetitive elements, inappropriate mRNA splicing, and over-expression of HSC-specific genes.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal